In this paper, we investigate a resource allocation issue in OFDMA-based decode-and-forward cooperative multiuser networks and propose joint subcarrier and power allocation schemes. The optimal solution of this combin...In this paper, we investigate a resource allocation issue in OFDMA-based decode-and-forward cooperative multiuser networks and propose joint subcarrier and power allocation schemes. The optimal solution of this combinable allocation shows high computational complexity, so we allocate subcarriers and power separately. At firstly, we distribute subcarriers to relays and users under the assumption of equal power distribution. Here, we propose an equal capacity increment (ECI) allocation strategy to achieve tradeoff between total throughput and fairness. To further improve the system performance, we introduce threshold into ECI strategy, named ECI strategy with threshold (ECI-T), where subcarriers with bad performance are prevented from transmitting. Subsequently, a water-filling method is adopted to distribute the power to cooperative links in order to fully utilize the limited power. Simulation results show that system performance of the proposed schemes is significantly enhanced compared with an existing resource allocation scheme. Besides, the resource allocation schemes with the water- filling method notably outperform schemes with equal power allocation.展开更多
Global long-term emission reduction targets need well defined options for equitable allocation of greenhouse gas emissions. Scholars from developing countries put forward the concept of equitable per capita cumulative...Global long-term emission reduction targets need well defined options for equitable allocation of greenhouse gas emissions. Scholars from developing countries put forward the concept of equitable per capita cumulative emission rights. There are four possible operational definitions resulting from this concept. These potential options for allocation of emission rights are expressed with mathematical equations. Through simple simulation, this paper reveals the advantages, disadvantages and characteristics of each option.展开更多
The effects of different wind input and wave dissipation formulations on the steady Ekman current solution are described. Two formulations are considered: one from the wave modeling(WAM) program proposed by Hasselmann...The effects of different wind input and wave dissipation formulations on the steady Ekman current solution are described. Two formulations are considered: one from the wave modeling(WAM) program proposed by Hasselmann and Komen and the other provided by Tsagareli and Babanin. The solution adopted for our study was presented by Song for the wave-modifi ed Ekman current model that included the Stokes drift, wind input, and wave dissipation with eddy viscosity increasing linearly with depth. Using the Combi spectrum with tail effects, the solutions are calculated using two formulations for wind input and wave dissipation, and compared. Differences in the results are not negligible. Furthermore, the solution presented by Song and Xu for the eddy viscosity formulated using the K-Profi le Parameterization scheme under wind input and wave dissipation given by Tsagareli and Babanin is compared with that obtained for a depth-dependent eddy viscosity. The solutions are further compared with the available well-known observational data. The result indicates that the Tsagareli and Babanin scheme is more suitable for use in the model when capillary waves are included, and the solution calculated using the K-Profi le Parameterization scheme agrees best with observations.展开更多
In this paper,a genetic algorithm (GA) is investigated to deal with cell-by-cell dynamic spectrumallocation (DSA) in the heterogeneous scenario with temporal and spatial traffic demand changes,whichis also known as a ...In this paper,a genetic algorithm (GA) is investigated to deal with cell-by-cell dynamic spectrumallocation (DSA) in the heterogeneous scenario with temporal and spatial traffic demand changes,whichis also known as a difficult combinatorial optimization problem.A new two-dimensional chromosome encodingscheme is defined according to characteristics of the heterogeneous scenario,which prevents forminginvalid solutions during the genetic operation and enables much faster convergence.A novel randomcoloring gene generation function is presented which is the basic operation for initialization and mutationin the genetic algorithm.Simulative comparison demonstrates that the proposed GA-based cell-by-cellDSA outperforms the conventional contiguous DSA scheme both in terms of spectral efficiency gain andquality of service (QoS) satisfaction.展开更多
The determination of allocable water is one of the most important stages during the process of formulating water allocation scheme.The selection of appropriate allocable water is the prerequisite and fundament for dev...The determination of allocable water is one of the most important stages during the process of formulating water allocation scheme.The selection of appropriate allocable water is the prerequisite and fundament for developing a reasonable water allocation scheme.Based on the summary and analysis of international water allocation practice,this paper has distilled three attention-worth issues concerning the determination of allocable water.In addition,this paper has also proposed a general method for the determination of allocable water and illustrated this method in detail.It is hoped that through providing a general and feasible method for determining allocable water,a fundament could be established for the consultation of water allocation process among different stakeholders,promoting the integrated management of river basins.展开更多
In wireless sensor networks (WSNs), group key distribution is the core of secure communications since sensor nodes usually form groups and cooperate with each other in sensing data collection and in-network processi...In wireless sensor networks (WSNs), group key distribution is the core of secure communications since sensor nodes usually form groups and cooperate with each other in sensing data collection and in-network processing. In this paper, we present a scalable authenticated scheme for group key distribution based on a combinatorial exclusion basis system (EBS) for efficiency and one-way hash chains for authentication. The proposed scheme guarantees a lightweight authenticated group key updating procedure and is efficient in terms of storage, communication and computation overheads.展开更多
Terahertz(THz) generation by periodically-poled RbTiOPO_4(PPRTP) with a quasi-phase-matching scheme based on cascaded difference frequency generation(DFG) processes is theoretically analyzed. The cascaded Stokes and a...Terahertz(THz) generation by periodically-poled RbTiOPO_4(PPRTP) with a quasi-phase-matching scheme based on cascaded difference frequency generation(DFG) processes is theoretically analyzed. The cascaded Stokes and anti-Stokes interaction processes are investigated from coupled wave equations. The THz intensities and quantum conversion efficiency are calculated. Compared with that of non-cascaded DFG processes, the THz intensity in 7-order cascaded DFG processes is increased to 2.95 times. The quantum conversion efficiency of 149.9% in cascaded processes can be realized, which exceeds the Manley-Rowe limit.展开更多
基金Supported by the National High Technology Research and Development Programme of China (No. 2009AA01Z247, No. 2007AA01Z265), and the National Natural Science Foundation of China (No. 60972076)
文摘In this paper, we investigate a resource allocation issue in OFDMA-based decode-and-forward cooperative multiuser networks and propose joint subcarrier and power allocation schemes. The optimal solution of this combinable allocation shows high computational complexity, so we allocate subcarriers and power separately. At firstly, we distribute subcarriers to relays and users under the assumption of equal power distribution. Here, we propose an equal capacity increment (ECI) allocation strategy to achieve tradeoff between total throughput and fairness. To further improve the system performance, we introduce threshold into ECI strategy, named ECI strategy with threshold (ECI-T), where subcarriers with bad performance are prevented from transmitting. Subsequently, a water-filling method is adopted to distribute the power to cooperative links in order to fully utilize the limited power. Simulation results show that system performance of the proposed schemes is significantly enhanced compared with an existing resource allocation scheme. Besides, the resource allocation schemes with the water- filling method notably outperform schemes with equal power allocation.
基金supported by the 2009 special study project employing basic scientific research fund of the Academy of Macroeconomic Research of NDRC
文摘Global long-term emission reduction targets need well defined options for equitable allocation of greenhouse gas emissions. Scholars from developing countries put forward the concept of equitable per capita cumulative emission rights. There are four possible operational definitions resulting from this concept. These potential options for allocation of emission rights are expressed with mathematical equations. Through simple simulation, this paper reveals the advantages, disadvantages and characteristics of each option.
基金Supported by the National Natural Science Foundation of China(No.41176016)the National Basic Research Program of China(973 Program)(Nos.2012CB417402,2011CB403501)the Fund for Creative Research Groups by National Natural Science Foundation of China(No.41121064)
文摘The effects of different wind input and wave dissipation formulations on the steady Ekman current solution are described. Two formulations are considered: one from the wave modeling(WAM) program proposed by Hasselmann and Komen and the other provided by Tsagareli and Babanin. The solution adopted for our study was presented by Song for the wave-modifi ed Ekman current model that included the Stokes drift, wind input, and wave dissipation with eddy viscosity increasing linearly with depth. Using the Combi spectrum with tail effects, the solutions are calculated using two formulations for wind input and wave dissipation, and compared. Differences in the results are not negligible. Furthermore, the solution presented by Song and Xu for the eddy viscosity formulated using the K-Profi le Parameterization scheme under wind input and wave dissipation given by Tsagareli and Babanin is compared with that obtained for a depth-dependent eddy viscosity. The solutions are further compared with the available well-known observational data. The result indicates that the Tsagareli and Babanin scheme is more suitable for use in the model when capillary waves are included, and the solution calculated using the K-Profi le Parameterization scheme agrees best with observations.
基金Supported by the National Basic Research Program of China (No. 2007CB310606)
文摘In this paper,a genetic algorithm (GA) is investigated to deal with cell-by-cell dynamic spectrumallocation (DSA) in the heterogeneous scenario with temporal and spatial traffic demand changes,whichis also known as a difficult combinatorial optimization problem.A new two-dimensional chromosome encodingscheme is defined according to characteristics of the heterogeneous scenario,which prevents forminginvalid solutions during the genetic operation and enables much faster convergence.A novel randomcoloring gene generation function is presented which is the basic operation for initialization and mutationin the genetic algorithm.Simulative comparison demonstrates that the proposed GA-based cell-by-cellDSA outperforms the conventional contiguous DSA scheme both in terms of spectral efficiency gain andquality of service (QoS) satisfaction.
文摘The determination of allocable water is one of the most important stages during the process of formulating water allocation scheme.The selection of appropriate allocable water is the prerequisite and fundament for developing a reasonable water allocation scheme.Based on the summary and analysis of international water allocation practice,this paper has distilled three attention-worth issues concerning the determination of allocable water.In addition,this paper has also proposed a general method for the determination of allocable water and illustrated this method in detail.It is hoped that through providing a general and feasible method for determining allocable water,a fundament could be established for the consultation of water allocation process among different stakeholders,promoting the integrated management of river basins.
基金the National High Technology Research and Development Program (863) of China (Nos. 2006AA01Z436, 2007AA01Z455, and2007AA01Z473)
文摘In wireless sensor networks (WSNs), group key distribution is the core of secure communications since sensor nodes usually form groups and cooperate with each other in sensing data collection and in-network processing. In this paper, we present a scalable authenticated scheme for group key distribution based on a combinatorial exclusion basis system (EBS) for efficiency and one-way hash chains for authentication. The proposed scheme guarantees a lightweight authenticated group key updating procedure and is efficient in terms of storage, communication and computation overheads.
基金supported by the National Natural Science Foundation of China(Nos.61201101,61601183 and 61205003)the Young Backbone Teachers in University of Henan Province(No.2014GGJS-065)+1 种基金the Foundation and Advanced Technology Research Program of Henan Province(No.162300410269)the Program for Innovative Research Team(in Science and Technology)in University of Henan Province(No.16IRTSTHN017)
文摘Terahertz(THz) generation by periodically-poled RbTiOPO_4(PPRTP) with a quasi-phase-matching scheme based on cascaded difference frequency generation(DFG) processes is theoretically analyzed. The cascaded Stokes and anti-Stokes interaction processes are investigated from coupled wave equations. The THz intensities and quantum conversion efficiency are calculated. Compared with that of non-cascaded DFG processes, the THz intensity in 7-order cascaded DFG processes is increased to 2.95 times. The quantum conversion efficiency of 149.9% in cascaded processes can be realized, which exceeds the Manley-Rowe limit.