Experiments on the partitioning of Cu between different granitic silicate melts and the respective coexisting aqueous fluids have been performed under conditions of 850 ℃, 100 MPa and oxygen fugacity (fO2) buffered...Experiments on the partitioning of Cu between different granitic silicate melts and the respective coexisting aqueous fluids have been performed under conditions of 850 ℃, 100 MPa and oxygen fugacity (fO2) buffered at approaching Ni-NiO (NNO). Partition coefficients of Cu (Dcu = Cfluid/Cmelt) were varied with different alumina/alkali mole ratios [Al2O3/(Na2O + K2O), abbreviated as Al/ Alk], Na/K mole ratios, and SiO2 mole contents. The DCu increased from 1.28 ± 0.01 to 22.18 ±0.22 with the increase of Al/Alk mole ratios (ranging from 0.64 to 1.20) and Na/K mole ratios (ranging from 0.58 to 2.56). The experimental results also showed that Dcu was positively correlated with the HCl concentration of the starting fluid. The Dcu was independent of the SiO2 mole content in the range of SiO2 content considered. No Dcu value was less than 1 in our experiments at 850 ℃ and 100 MPa, indicating that Cu preferred to enter the fluid phase rather than the coexisting melt phase under most conditions in the melt-fluid system, and thus a significant amount of Cu could be transported in the fluid phase in the magmatichydrothermal environment. The results indicated that Cu favored partitioning into the aqueous fluid rather than the melt phase if there was a high Na/K ratio, Na-rich, peraluminous granitic melt coexisting with the high Cl^- fluid.展开更多
The distribution rules of impurities in distilled terbium metal were investigated by vacuum distillation purificationexperiment and theoretical analysis.It is found that Ti impurity in distilled terbium is220mg/kg in ...The distribution rules of impurities in distilled terbium metal were investigated by vacuum distillation purificationexperiment and theoretical analysis.It is found that Ti impurity in distilled terbium is220mg/kg in the initial stage of the distillationpurification,increases slowly in the middle stage,and increases rapidly in the last stage,reaching2260mg/kg,and the modifiedseparation coefficient of Ti is1/19.02.The diffusion of the impurity Ti in liquid metal can reach a quasi-equilibrium state in theinitial stage of distillation purification and the calculated results agree well with experimental results;the distribution profile ofimpurity Cu is opposite to Ti,being380mg/kg in the initial stage,decreasing linearly to290mg/kg in the last stage,and themodified separation coefficient is17.99,and the theoretical calculated results are inconsistent with the experimental result.展开更多
文摘Experiments on the partitioning of Cu between different granitic silicate melts and the respective coexisting aqueous fluids have been performed under conditions of 850 ℃, 100 MPa and oxygen fugacity (fO2) buffered at approaching Ni-NiO (NNO). Partition coefficients of Cu (Dcu = Cfluid/Cmelt) were varied with different alumina/alkali mole ratios [Al2O3/(Na2O + K2O), abbreviated as Al/ Alk], Na/K mole ratios, and SiO2 mole contents. The DCu increased from 1.28 ± 0.01 to 22.18 ±0.22 with the increase of Al/Alk mole ratios (ranging from 0.64 to 1.20) and Na/K mole ratios (ranging from 0.58 to 2.56). The experimental results also showed that Dcu was positively correlated with the HCl concentration of the starting fluid. The Dcu was independent of the SiO2 mole content in the range of SiO2 content considered. No Dcu value was less than 1 in our experiments at 850 ℃ and 100 MPa, indicating that Cu preferred to enter the fluid phase rather than the coexisting melt phase under most conditions in the melt-fluid system, and thus a significant amount of Cu could be transported in the fluid phase in the magmatichydrothermal environment. The results indicated that Cu favored partitioning into the aqueous fluid rather than the melt phase if there was a high Na/K ratio, Na-rich, peraluminous granitic melt coexisting with the high Cl^- fluid.
基金Project(51504036) supported by the National Natural Science Foundation of ChinaProject(2012CBA01207) supported by the National Basic Research Program of ChinaProject(2011AA03A409) supported by the National High-Tech Research and Development Program of China
文摘The distribution rules of impurities in distilled terbium metal were investigated by vacuum distillation purificationexperiment and theoretical analysis.It is found that Ti impurity in distilled terbium is220mg/kg in the initial stage of the distillationpurification,increases slowly in the middle stage,and increases rapidly in the last stage,reaching2260mg/kg,and the modifiedseparation coefficient of Ti is1/19.02.The diffusion of the impurity Ti in liquid metal can reach a quasi-equilibrium state in theinitial stage of distillation purification and the calculated results agree well with experimental results;the distribution profile ofimpurity Cu is opposite to Ti,being380mg/kg in the initial stage,decreasing linearly to290mg/kg in the last stage,and themodified separation coefficient is17.99,and the theoretical calculated results are inconsistent with the experimental result.