A new purification process was developed to remove impurities in metallurgical grade silicon (MG-Si) by electromagnetic induction slag melting (EISM). Vacuum melting furnace was used to purify boron in different s...A new purification process was developed to remove impurities in metallurgical grade silicon (MG-Si) by electromagnetic induction slag melting (EISM). Vacuum melting furnace was used to purify boron in different slag systems. The results show that the removal effect in SiO2-CaO-Al2O3 systems is better than that in other slag systems by EISM. The boron content in MG-Si is successfully reduced from 1.5× 10^-5 to 0.2× 10^-5 during EISM at 1 823 K for 2 h. Meanwhile, Al, Ca and Mg elements in MG-Si are also well removed and their removal efficiencies reach 85.0%, 50.2% and 66.7%, respectively, which indicates that EISM is very effective to remove boron and metal impurities in silicon.展开更多
Boron removal from metallurgical grade silicon (MG-Si) using a calcium silicate slag was studied. The results show that it is impossible basically to remove boron using a pure SiO2 refining. The oxidizing ability of...Boron removal from metallurgical grade silicon (MG-Si) using a calcium silicate slag was studied. The results show that it is impossible basically to remove boron using a pure SiO2 refining. The oxidizing ability of CaO-SiO2 slag for boron removal was characterized by establishing the thermodynamic relationship between the distribution coefficient of boron (LB) and the activities of SiO2 and CaO. The experimental results show that the distribution coefficient and the removal efficiency of boron are greatly improved with the increase of CaO proportion in the slag. The maximal value of LB reaches 1.57 with a slag composition of 60%CaO-40%SiO2 (mass fraction). The boron content in the refined silicon is reduced from 18×10^-6 to 1.8×10^-6 using slag refining at 1600 ℃ for 3 h with a CaO-SiO2/MG-Si ratio of 2.5, and the removal efficiency of boron reaches 90%.展开更多
The removal of boron from metallurgical silicon in slag system of CaO-SiO2-10%CaF2 was investigated. The partition coefficient of boron (LB) between slag and silicon phase was studied under different conditions of s...The removal of boron from metallurgical silicon in slag system of CaO-SiO2-10%CaF2 was investigated. The partition coefficient of boron (LB) between slag and silicon phase was studied under different conditions of slag basicity (CaO/SiO2 ratio), temperature, mass ratio of slag to silicon and gas blowing. The results show that LB has a maximum value of 4.61 when the CaO/SiO2 mass ratio is around 2 at l 873 K. The logarithm of LB is linear to the reciprocal of temperatures in the range of 1 773-1 973 K. LB increases with the increase of mass ratio of slag to silicon, but it does not increase markedly when the ratio excesses 3. Gas blowing can sionificantlv increase the removal of boron, and LR increases with the increase of water vapor content.展开更多
The effects of CaO content,MgO content and smelting temperature on the vanadium behavior during the smelting of vanadium titanomagnetite metallized pellets were investigated.The thermodynamics of reduction and distrib...The effects of CaO content,MgO content and smelting temperature on the vanadium behavior during the smelting of vanadium titanomagnetite metallized pellets were investigated.The thermodynamics of reduction and distribution of vanadium was analyzed and the high-temperature smelting experiments were carried out.The thermodynamic calculations show that the distribution ratio of vanadium between the slag and the hot metal decreases with the increments of CaO and MgO content in the slag as well as the increase of the smelting temperature.The smelting experiments demonstrate that the vanadium content in iron and the recovery rate of vanadium in pig iron increase as the CaO content,MgO content and smelting temperature increase,whereas the vanadium distribution ratio between the slag and iron tends to decrease.Moreover,the recovery rate of vanadium in pig iron has a rising trend with increasing the optical basicity of the slag.The addition of MgO in the slag to increase the slag optical basicity can not only improve the vanadium reduction but also promote the formation of magnesium-containing anosovite,which is beneficial to following titanium extraction.展开更多
Extracting vanadium and removing phosphorus simultaneously by adding CaO containing materials to V-bearing hot metal were investigated under the condition of simulating the process of vanadium extraction with insuffic...Extracting vanadium and removing phosphorus simultaneously by adding CaO containing materials to V-bearing hot metal were investigated under the condition of simulating the process of vanadium extraction with insufficiently supplying oxygen in converter. Through preliminary experiments, 3 h and 1375 °C were chosen as the optimum holding time and reaction temperature for formal experiments, respectively. The results of the formal experiments suggest that making basic slag can extract vanadium and remove phosphorus simultaneously. The vanadium extraction rate(ηV) and phosphorus removal rate(ηP) both increase with an increase in the basicity of the original slag materials and the Fe2O3 contents. The vanadium distribution ratio)(V L′is about an order of magnitude greater than the phosphorus distribution ratio),(P L′but the latter is more sensitive to slag basicity than the former. The phosphorus distribution ratio is beyond 6 when the basicity of the original slag materials is beyond 1, which indicates a much better performance of phosphorus removal compared to the phosphorus removal in the current process. Therefore, it is very feasible to properly raise slag basicity to remove phosphorus with consideration of the grade of vanadium slag. The relations between ηV and ηP, and between L′V and L′P are linear under the experimental conditions.展开更多
基金Project (50674018) supported by the National Natural Science Foundation of China
文摘A new purification process was developed to remove impurities in metallurgical grade silicon (MG-Si) by electromagnetic induction slag melting (EISM). Vacuum melting furnace was used to purify boron in different slag systems. The results show that the removal effect in SiO2-CaO-Al2O3 systems is better than that in other slag systems by EISM. The boron content in MG-Si is successfully reduced from 1.5× 10^-5 to 0.2× 10^-5 during EISM at 1 823 K for 2 h. Meanwhile, Al, Ca and Mg elements in MG-Si are also well removed and their removal efficiencies reach 85.0%, 50.2% and 66.7%, respectively, which indicates that EISM is very effective to remove boron and metal impurities in silicon.
基金Projects (51104080,u1137601) supported by the National Natural Science Foundation of ChinaProject (14118557) supported by the Personnel Training Foundation of Kunming University of Science and Technology in China
文摘Boron removal from metallurgical grade silicon (MG-Si) using a calcium silicate slag was studied. The results show that it is impossible basically to remove boron using a pure SiO2 refining. The oxidizing ability of CaO-SiO2 slag for boron removal was characterized by establishing the thermodynamic relationship between the distribution coefficient of boron (LB) and the activities of SiO2 and CaO. The experimental results show that the distribution coefficient and the removal efficiency of boron are greatly improved with the increase of CaO proportion in the slag. The maximal value of LB reaches 1.57 with a slag composition of 60%CaO-40%SiO2 (mass fraction). The boron content in the refined silicon is reduced from 18×10^-6 to 1.8×10^-6 using slag refining at 1600 ℃ for 3 h with a CaO-SiO2/MG-Si ratio of 2.5, and the removal efficiency of boron reaches 90%.
基金Project(2007J0012)supported by the Natural Science Foundation of Fujian Province,ChinaProject(2007HZ0005-2)supported by the Key Technological Program of Fujian Province,China
文摘The removal of boron from metallurgical silicon in slag system of CaO-SiO2-10%CaF2 was investigated. The partition coefficient of boron (LB) between slag and silicon phase was studied under different conditions of slag basicity (CaO/SiO2 ratio), temperature, mass ratio of slag to silicon and gas blowing. The results show that LB has a maximum value of 4.61 when the CaO/SiO2 mass ratio is around 2 at l 873 K. The logarithm of LB is linear to the reciprocal of temperatures in the range of 1 773-1 973 K. LB increases with the increase of mass ratio of slag to silicon, but it does not increase markedly when the ratio excesses 3. Gas blowing can sionificantlv increase the removal of boron, and LR increases with the increase of water vapor content.
基金Project(2019JJ50816)supported by the Natural Science Foundation of Hunan Province,China。
文摘The effects of CaO content,MgO content and smelting temperature on the vanadium behavior during the smelting of vanadium titanomagnetite metallized pellets were investigated.The thermodynamics of reduction and distribution of vanadium was analyzed and the high-temperature smelting experiments were carried out.The thermodynamic calculations show that the distribution ratio of vanadium between the slag and the hot metal decreases with the increments of CaO and MgO content in the slag as well as the increase of the smelting temperature.The smelting experiments demonstrate that the vanadium content in iron and the recovery rate of vanadium in pig iron increase as the CaO content,MgO content and smelting temperature increase,whereas the vanadium distribution ratio between the slag and iron tends to decrease.Moreover,the recovery rate of vanadium in pig iron has a rising trend with increasing the optical basicity of the slag.The addition of MgO in the slag to increase the slag optical basicity can not only improve the vanadium reduction but also promote the formation of magnesium-containing anosovite,which is beneficial to following titanium extraction.
基金Project(41603004)supported by the Independent Research Program of State Key Laboratory of Advanced Metallurgy(University of Science and Technology Beijing),China
文摘Extracting vanadium and removing phosphorus simultaneously by adding CaO containing materials to V-bearing hot metal were investigated under the condition of simulating the process of vanadium extraction with insufficiently supplying oxygen in converter. Through preliminary experiments, 3 h and 1375 °C were chosen as the optimum holding time and reaction temperature for formal experiments, respectively. The results of the formal experiments suggest that making basic slag can extract vanadium and remove phosphorus simultaneously. The vanadium extraction rate(ηV) and phosphorus removal rate(ηP) both increase with an increase in the basicity of the original slag materials and the Fe2O3 contents. The vanadium distribution ratio)(V L′is about an order of magnitude greater than the phosphorus distribution ratio),(P L′but the latter is more sensitive to slag basicity than the former. The phosphorus distribution ratio is beyond 6 when the basicity of the original slag materials is beyond 1, which indicates a much better performance of phosphorus removal compared to the phosphorus removal in the current process. Therefore, it is very feasible to properly raise slag basicity to remove phosphorus with consideration of the grade of vanadium slag. The relations between ηV and ηP, and between L′V and L′P are linear under the experimental conditions.