期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
压电材料平面问题的虚边界元-等额配点解法 被引量:2
1
作者 姚伟岸 王辉 《计算力学学报》 EI CAS CSCD 北大核心 2005年第1期42-46,共5页
利用压电材料平面问题的基本解和弹性力学虚边界元方法的基本思想,提出了压电材料平面问题的虚边界元-等额配点解法。该解法继承了传统边界元方法的优点,而避免了传统边界元方法遇到的边界积分奇异性问题。最后给出了压电材料平面问题... 利用压电材料平面问题的基本解和弹性力学虚边界元方法的基本思想,提出了压电材料平面问题的虚边界元-等额配点解法。该解法继承了传统边界元方法的优点,而避免了传统边界元方法遇到的边界积分奇异性问题。最后给出了压电材料平面问题的一些具体算例,并与解析解作了比较。结果表明本文的方法有很高的精度,是该问题一个十分有效的数值求解方法。 展开更多
关键词 J:压电材料 虚边界元 基本解 配点解法
下载PDF
A Jacobi-collocation method for solving second kind Fredholm integral equations with weakly singular kernels
2
作者 CAI Hao Tao 《Science China Mathematics》 SCIE 2014年第10期2163-2178,共16页
In this work,we propose a Jacobi-collocation method to solve the second kind linear Fredholm integral equations with weakly singular kernels.Particularly,we consider the case when the underlying solutions are sufficie... In this work,we propose a Jacobi-collocation method to solve the second kind linear Fredholm integral equations with weakly singular kernels.Particularly,we consider the case when the underlying solutions are sufficiently smooth.In this case,the proposed method leads to a fully discrete linear system.We show that the fully discrete integral operator is stable in both infinite and weighted square norms.Furthermore,we establish that the approximate solution arrives at an optimal convergence order under the two norms.Finally,we give some numerical examples,which confirm the theoretical prediction of the exponential rate of convergence. 展开更多
关键词 second kind Fredholm integral equations with weakly singular kernels Jacobi-collocation methods stability analysis convergence analysis
原文传递
A collocation method for numerical solutions of fractional-order logistic population model 被引量:1
3
作者 Suayip Yfizbas 《International Journal of Biomathematics》 2016年第2期235-248,共14页
In this study, a collocation technique is presented for approximate solution of the fractional-order logistic population model. Actually, we develop the Bessel collocation method by using the fractional derivative in ... In this study, a collocation technique is presented for approximate solution of the fractional-order logistic population model. Actually, we develop the Bessel collocation method by using the fractional derivative in the Caputo sense to obtain the approximate solutions of this model problem. By means of the fractional derivative in the Caputo sense, the collocation points, the Bessel functions of the first kind, the method transforms the model problem into a system of nonlinear algebraic equations. Numerical applications are given to demonstrate efficiency and accuracy of the method. In applications, the reliability of the scheme is shown by the error function based on the accuracy of the approximate solution. 展开更多
关键词 Fractional-order logistic population model functions of first kind collocation method approximate differential equations. fractional derivative Bessel solution: nonlinear fractional
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部