Boron removal from metallurgical grade silicon (MG-Si) using a calcium silicate slag was studied. The results show that it is impossible basically to remove boron using a pure SiO2 refining. The oxidizing ability of...Boron removal from metallurgical grade silicon (MG-Si) using a calcium silicate slag was studied. The results show that it is impossible basically to remove boron using a pure SiO2 refining. The oxidizing ability of CaO-SiO2 slag for boron removal was characterized by establishing the thermodynamic relationship between the distribution coefficient of boron (LB) and the activities of SiO2 and CaO. The experimental results show that the distribution coefficient and the removal efficiency of boron are greatly improved with the increase of CaO proportion in the slag. The maximal value of LB reaches 1.57 with a slag composition of 60%CaO-40%SiO2 (mass fraction). The boron content in the refined silicon is reduced from 18×10^-6 to 1.8×10^-6 using slag refining at 1600 ℃ for 3 h with a CaO-SiO2/MG-Si ratio of 2.5, and the removal efficiency of boron reaches 90%.展开更多
Thermal performance was the most important factor in the development of borehole heat exchanger utilizing geothermal energy. The thermal performance was affected by many different design parameters, such as configurat...Thermal performance was the most important factor in the development of borehole heat exchanger utilizing geothermal energy. The thermal performance was affected by many different design parameters, such as configuration type and borehole size of geothermal heat exchanger. These eventually determined the operation and cost efficiency of the geothermal heat exchanger system. The main purpose of this work was to assess the thermal performance of geother^nal heat exchanger with variation of borehole sizes and numbers of U-tubes inside a borehole. For this, a thermal response test rig was established with line-source theory. The thermal response test was performed with in-line variable input heat source. Effective thermal conductivity and thermal resistance were obtained from the measured data. From the measurement, the effective thermal conductivity is found to have similar values for two- pair type (4 U-tubes) and three-pair type (6 U-tubes) borehole heat exchanger systems indicating similar heat transfer ability. Meanwhile, the thermal resistance shows lower value for the three-pair type compared to the two-pair type. Measured data based resistance have lower value compared to computed result from design programs. Overall comparison finds better thermal performance for the three-pair type, however, fluctuating temperature variation indicates complex flow behavior inside the borehole and requires further study on flow characteristics.展开更多
This paper deals with the Cauchy problem to the nonlinear pseudo-parabolic system ut - △u - αut =vp, vt -△v - α△vt = uq with p, q≥ 1 and pq 〉 1, where the viscous terms of third order are included. We first fin...This paper deals with the Cauchy problem to the nonlinear pseudo-parabolic system ut - △u - αut =vp, vt -△v - α△vt = uq with p, q≥ 1 and pq 〉 1, where the viscous terms of third order are included. We first find the critical Fujita exponent, and then determine the second critical exponent to characterize the critical space-decay rate of initial data in the co-existence region of global and non-global solutions. Moreover, time-decay profiles are obtained for the global solutions. It can be found that, different from those for the situations of general semilinear heat systems, we have to use distinctive techniques to treat the influence from the viscous terms of the highest order. To fix the non-global solutions, we exploit the test function method, instead of the general Kaplan method for heat systems. To obtain the global solutions, we apply the LP-Lq technique to establish some uniform Lm time-decay estimates. In particular, under a suitable classification for the nonlinear parameters and the initial data, various Lm time-decay estimates in the procedure enable us to arrive at the time-decay profiles of solutions to the system. It is mentioned that the general scaling method for parabolic problems relies heavily on regularizing effect to establish the compactness of approximating solutions, which cannot be directly realized here due to absence of the smooth effect in the pseudo-parabolic system.展开更多
In heat exchangers, the magnitude of Nu of each duct is influenced by the temperature field, since the ratio of heat capacity rate will influence the matching status of the temperature field between contacting ducts, ...In heat exchangers, the magnitude of Nu of each duct is influenced by the temperature field, since the ratio of heat capacity rate will influence the matching status of the temperature field between contacting ducts, the total heat transfer coefficient is related with the ratio of heat capacity rate. Considering this relationship, a new method for analyzing heat exchanger is proposed - matching of temperature field. First, for a single duct with the temperature field varying exponentially along the flow direction, its Nu is calculated. Then under the hypothesis that the thermal resistance of the wall is negligible, the matching condition was set like this: both the temperature and heat flux are equal for the hot and cold fluids at the wall, so the matching relationship of parameter that describes the temperature field of the hot and cold fluids, was obtained. Finally the relationship between the total Nu and the ratio of heat capacity rate along with the ratio of inherent thermal resistance is obtained. Compared with traditional analyzing methods, the temperature matching method can be used to get the total heat transfer coefficient directly, and also be used for optimization of heat exchanger design. For a parallel flow, the optimal ratio of heat capacity rate is reciprocal to the ratio of inherent thermal resistance, and for a counter flow, the optimal ratio of heat capacity rate is zero or infinity.展开更多
基金Projects (51104080,u1137601) supported by the National Natural Science Foundation of ChinaProject (14118557) supported by the Personnel Training Foundation of Kunming University of Science and Technology in China
文摘Boron removal from metallurgical grade silicon (MG-Si) using a calcium silicate slag was studied. The results show that it is impossible basically to remove boron using a pure SiO2 refining. The oxidizing ability of CaO-SiO2 slag for boron removal was characterized by establishing the thermodynamic relationship between the distribution coefficient of boron (LB) and the activities of SiO2 and CaO. The experimental results show that the distribution coefficient and the removal efficiency of boron are greatly improved with the increase of CaO proportion in the slag. The maximal value of LB reaches 1.57 with a slag composition of 60%CaO-40%SiO2 (mass fraction). The boron content in the refined silicon is reduced from 18×10^-6 to 1.8×10^-6 using slag refining at 1600 ℃ for 3 h with a CaO-SiO2/MG-Si ratio of 2.5, and the removal efficiency of boron reaches 90%.
基金Project financially supported by the Second Stage of Brain Korea 21 Projects and Changwon National University,Korea
文摘Thermal performance was the most important factor in the development of borehole heat exchanger utilizing geothermal energy. The thermal performance was affected by many different design parameters, such as configuration type and borehole size of geothermal heat exchanger. These eventually determined the operation and cost efficiency of the geothermal heat exchanger system. The main purpose of this work was to assess the thermal performance of geother^nal heat exchanger with variation of borehole sizes and numbers of U-tubes inside a borehole. For this, a thermal response test rig was established with line-source theory. The thermal response test was performed with in-line variable input heat source. Effective thermal conductivity and thermal resistance were obtained from the measured data. From the measurement, the effective thermal conductivity is found to have similar values for two- pair type (4 U-tubes) and three-pair type (6 U-tubes) borehole heat exchanger systems indicating similar heat transfer ability. Meanwhile, the thermal resistance shows lower value for the three-pair type compared to the two-pair type. Measured data based resistance have lower value compared to computed result from design programs. Overall comparison finds better thermal performance for the three-pair type, however, fluctuating temperature variation indicates complex flow behavior inside the borehole and requires further study on flow characteristics.
基金supported by National Natural Science Foundation of China(Grant Nos.11171048 and 11201047)the Doctor Startup Foundation of Liaoning Province(Grant No.20121025)the Fundamental Research Funds for the Central Universities
文摘This paper deals with the Cauchy problem to the nonlinear pseudo-parabolic system ut - △u - αut =vp, vt -△v - α△vt = uq with p, q≥ 1 and pq 〉 1, where the viscous terms of third order are included. We first find the critical Fujita exponent, and then determine the second critical exponent to characterize the critical space-decay rate of initial data in the co-existence region of global and non-global solutions. Moreover, time-decay profiles are obtained for the global solutions. It can be found that, different from those for the situations of general semilinear heat systems, we have to use distinctive techniques to treat the influence from the viscous terms of the highest order. To fix the non-global solutions, we exploit the test function method, instead of the general Kaplan method for heat systems. To obtain the global solutions, we apply the LP-Lq technique to establish some uniform Lm time-decay estimates. In particular, under a suitable classification for the nonlinear parameters and the initial data, various Lm time-decay estimates in the procedure enable us to arrive at the time-decay profiles of solutions to the system. It is mentioned that the general scaling method for parabolic problems relies heavily on regularizing effect to establish the compactness of approximating solutions, which cannot be directly realized here due to absence of the smooth effect in the pseudo-parabolic system.
基金supported by the National Basic Research Program of China"973"Program)(Grant No.2011CB710705)the strategic priority research program of the Chinese Academy of Sciences(Grant No.XDA03010500)
文摘In heat exchangers, the magnitude of Nu of each duct is influenced by the temperature field, since the ratio of heat capacity rate will influence the matching status of the temperature field between contacting ducts, the total heat transfer coefficient is related with the ratio of heat capacity rate. Considering this relationship, a new method for analyzing heat exchanger is proposed - matching of temperature field. First, for a single duct with the temperature field varying exponentially along the flow direction, its Nu is calculated. Then under the hypothesis that the thermal resistance of the wall is negligible, the matching condition was set like this: both the temperature and heat flux are equal for the hot and cold fluids at the wall, so the matching relationship of parameter that describes the temperature field of the hot and cold fluids, was obtained. Finally the relationship between the total Nu and the ratio of heat capacity rate along with the ratio of inherent thermal resistance is obtained. Compared with traditional analyzing methods, the temperature matching method can be used to get the total heat transfer coefficient directly, and also be used for optimization of heat exchanger design. For a parallel flow, the optimal ratio of heat capacity rate is reciprocal to the ratio of inherent thermal resistance, and for a counter flow, the optimal ratio of heat capacity rate is zero or infinity.