An LES simulation of flow over an accumulator unit of an underwater compressed air energy storage facility was conducted. The accumulator unit consists of three touching underwater balloons arranged in a floral config...An LES simulation of flow over an accumulator unit of an underwater compressed air energy storage facility was conducted. The accumulator unit consists of three touching underwater balloons arranged in a floral configuration. The structure of the flow was examined via three dimensional iso surfaces of the Q criterion. Vortical cores were observed on the leeward surface of the balloons. The swirling tube flows generated by these vortical cores were depicted through three dimensional path lines. The flow dynamics were visualized via time series snapshots of two dimensional vorticity contours perpendicular to the flow direction; revealing the turbulent swinging motions of the aforementioned shedding-swirling tube flows. The time history of the hydrodynamic loading was presented in terms of lift and drag coefficients. Drag coefficient of each individual balloon in the floral configuration was smaller than that of a single balloon. It was found that the total drag coefficient of the floral unit of three touching balloons, i.e. summation of the drag coefficients of the balloons, is not too much larger than that of a single balloon whereas it provides three times the storage capacity. In addition to its practical significance in designing appropriate foundation and supports, the instantaneous hydrodynamic loading was used to determine the frequency of the turbulent swirling-swinging motions of the shedding vortex tubes; the Strouhal number was found to be larger than that of a single sphere at the same Reynolds number.展开更多
The magamp (magnetic amplifier) is widely used in power supplies due to its low cost, simplicity and other advan-tages. This paper discusses a novel application of the magamp in switching power supplies, where the mag...The magamp (magnetic amplifier) is widely used in power supplies due to its low cost, simplicity and other advan-tages. This paper discusses a novel application of the magamp in switching power supplies, where the magamp is used to regulate pulse width modulation (PWM) instead of power signal in the main circuit. This method extends the application of the magamp in power supplies, and makes it possible to further regulate control signal when PWMs have been generated. Based on this applica-tion, a new current-sharing (CS) scheme using the magamp is proposed, which uses a modified inner loop CS structure. In this scheme PWMs are generated by one main controller, and CS is achieved by regulating PWMs using a magamp in each module. Compared with traditional application of the magamp, the new CS scheme can be used in most topologies and only requires magamps of low power capacity. Then a test circuit of parallel power supply is developed, in which CS is achieved by a PWM regulator with the magamp. The proposed scheme is also used to upgrade an electroplate power to make it capable of paralleling supplies. Experimental results show that the proposed scheme has good CS performance.展开更多
This paper introduces in detail the reactive power compensation technology and its characteristics, to reduce the loss of reactive power compensation technology 1N power distribution system and the electrical automati...This paper introduces in detail the reactive power compensation technology and its characteristics, to reduce the loss of reactive power compensation technology 1N power distribution system and the electrical automation, improve the utilization rate, and realize the control of the voltage amplitude in the system network, voltage stability of power distribution system, has carried on the system analysis to reduce failure of the harmonic current to the power supply system and other functions. And the paper in-depth study on the application of reactive power compensation technology in electrical automation from the reactive compensation technology, substation and distribution line reactive power compensation, power users of reactive power compensation and other aspects.展开更多
Air-gapped computers are isolated both logically and physically from all kinds of existing common communication channel, such as USB ports, wireless and wired net- works. Although the feasibility of infiltrating an ai...Air-gapped computers are isolated both logically and physically from all kinds of existing common communication channel, such as USB ports, wireless and wired net- works. Although the feasibility of infiltrating an air-gapped computer has been proved in recent years, data exfiltration from such sys- tems is still considered to be a challenging task. In this paper we present Powermittcr, a novel approach that can exfiltrate data through an air-gapped computer via its power adapter. Our method utilizes the switched-mode pow- er supply, which exists in all of the laptops, desktop computers and servers nowadays. We demonstrate that a malware can indirectly con- trol the electromagnetic emission frequency of the power supply by leveraging the CPU utili- zation. Furthermore, we show that the emitted signals can be received and demodulated by a dedicated device. We present the proof of con- cept design of the power covert channel and implement a prototype of Powermitter consist- ing of a transmitter and a receiver. The trans- mitter leaks out data by using a variant binary frequency shift keying modulation, and the emitted signal can be captured and decoded by software based virtual oscilloscope through such covert channel. We tested Powermitter on three different computers. The experiment re-suits show the feasibility of this power covert channel. We show that our method can also be used to leak data from different types of embedded systems which use switching power supply.展开更多
A novel method of matching stiffness and continuous variable damping of an ECAS(electronically controlled air suspension) based on LQG(linear quadratic Gaussian) control was proposed to simultaneously improve the road...A novel method of matching stiffness and continuous variable damping of an ECAS(electronically controlled air suspension) based on LQG(linear quadratic Gaussian) control was proposed to simultaneously improve the road-friendliness and ride comfort of a two-axle school bus.Taking account of the suspension nonlinearities and target-height-dependent variation in suspension characteristics,a stiffness model of the ECAS mounted on the drive axle of the bus was developed based on thermodynamics and the key parameters were obtained through field tests.By determining the proper range of the target height for the ECAS of the fully-loaded bus based on the design requirements of vehicle body bounce frequency,the control algorithm of the target suspension height(i.e.,stiffness) was derived according to driving speed and road roughness.Taking account of the nonlinearities of a continuous variable semi-active damper,the damping force was obtained through the subtraction of the air spring force from the optimum integrated suspension force,which was calculated based on LQG control.Finally,a GA(genetic algorithm)-based matching method between stepped variable damping and stiffness was employed as a benchmark to evaluate the effectiveness of the LQG-based matching method.Simulation results indicate that compared with the GA-based matching method,both dynamic tire force and vehicle body vertical acceleration responses are markedly reduced around the vehicle body bounce frequency employing the LQG-based matching method,with peak values of the dynamic tire force PSD(power spectral density) decreased by 73.6%,60.8% and 71.9% in the three cases,and corresponding reduction are 71.3%,59.4% and 68.2% for the vehicle body vertical acceleration.A strong robustness to variation of driving speed and road roughness is also observed for the LQG-based matching method.展开更多
Cloud computing is becoming a key factor in the market day by day. Therefore, many companies are investing or going to invest in this sector for development of large data centers. These data centers not only consume m...Cloud computing is becoming a key factor in the market day by day. Therefore, many companies are investing or going to invest in this sector for development of large data centers. These data centers not only consume more energy but also produce greenhouse gases. Because of large amount of power consumption, data center providers go for different types of power generator to increase the profit margin which indirectly affects the environment. Several studies are carried out to reduce the power consumption of a data center. One of the techniques to reduce power consumption is virtualization. After several studies, it is stated that hardware plays a very important role. As the load increases, the power consumption of the CPU is also increased. Therefore, by extending the study of virtualization to reduce the power consumption, a hardware-based algorithm for virtual machine provisioning in a private cloud can significantly improve the performance by considering hardware as one of the important factors.展开更多
The study of ultracold Fermi gases has exploded a variety of experimental and theoretical research since the achievement of degenerate quantum gases in the lab,which expands the research range over atomic physics,cond...The study of ultracold Fermi gases has exploded a variety of experimental and theoretical research since the achievement of degenerate quantum gases in the lab,which expands the research range over atomic physics,condensed matter physics,astrophysics and particle physics.Using the Feshbach resonance,one can tune the attractive two-body interaction from weak to strong and thereby make a smooth crossover from the BCS superfluid of cooper pairs to the Bose Einstein condensate of bound molecules.In this crossover regime,the pairing effect plays a significant role in interpreting the interaction mechanism.Whenever the localized or delocalized pairing occurs at sufficiently low temperature,the single-particle energy will shift with respect to free atoms,due to the two-body or many-body interaction.Measuring the pairing gap can improve the understanding of the thermodynamics and hydrodynamics of the phase transition from the pseudogap to the superfluid,which will make an analogue to the high-temperature superconductivity in condensed matter.In this work,we will give a brief introduction to a novel radio-frequency(RF) spectroscopic measurement for pairing gap in an ultracold Fermi gas,which is currently widely used on the ultracold atomic table in the lab.In different interaction regimes of the BEC-BCS crossover,ultracold atoms are excited with a RF pulse and the characteristic behavior can be extracted from the spectrum.展开更多
文摘An LES simulation of flow over an accumulator unit of an underwater compressed air energy storage facility was conducted. The accumulator unit consists of three touching underwater balloons arranged in a floral configuration. The structure of the flow was examined via three dimensional iso surfaces of the Q criterion. Vortical cores were observed on the leeward surface of the balloons. The swirling tube flows generated by these vortical cores were depicted through three dimensional path lines. The flow dynamics were visualized via time series snapshots of two dimensional vorticity contours perpendicular to the flow direction; revealing the turbulent swinging motions of the aforementioned shedding-swirling tube flows. The time history of the hydrodynamic loading was presented in terms of lift and drag coefficients. Drag coefficient of each individual balloon in the floral configuration was smaller than that of a single balloon. It was found that the total drag coefficient of the floral unit of three touching balloons, i.e. summation of the drag coefficients of the balloons, is not too much larger than that of a single balloon whereas it provides three times the storage capacity. In addition to its practical significance in designing appropriate foundation and supports, the instantaneous hydrodynamic loading was used to determine the frequency of the turbulent swirling-swinging motions of the shedding vortex tubes; the Strouhal number was found to be larger than that of a single sphere at the same Reynolds number.
基金Project (No. 50677063) supported by the National Natural Science Foundation of China
文摘The magamp (magnetic amplifier) is widely used in power supplies due to its low cost, simplicity and other advan-tages. This paper discusses a novel application of the magamp in switching power supplies, where the magamp is used to regulate pulse width modulation (PWM) instead of power signal in the main circuit. This method extends the application of the magamp in power supplies, and makes it possible to further regulate control signal when PWMs have been generated. Based on this applica-tion, a new current-sharing (CS) scheme using the magamp is proposed, which uses a modified inner loop CS structure. In this scheme PWMs are generated by one main controller, and CS is achieved by regulating PWMs using a magamp in each module. Compared with traditional application of the magamp, the new CS scheme can be used in most topologies and only requires magamps of low power capacity. Then a test circuit of parallel power supply is developed, in which CS is achieved by a PWM regulator with the magamp. The proposed scheme is also used to upgrade an electroplate power to make it capable of paralleling supplies. Experimental results show that the proposed scheme has good CS performance.
文摘This paper introduces in detail the reactive power compensation technology and its characteristics, to reduce the loss of reactive power compensation technology 1N power distribution system and the electrical automation, improve the utilization rate, and realize the control of the voltage amplitude in the system network, voltage stability of power distribution system, has carried on the system analysis to reduce failure of the harmonic current to the power supply system and other functions. And the paper in-depth study on the application of reactive power compensation technology in electrical automation from the reactive compensation technology, substation and distribution line reactive power compensation, power users of reactive power compensation and other aspects.
基金supported by the National High Technology Research and Development Program of China ("863" Program) (Grant No. 2015AA016002)the National Basic Research Program of China ("973" Program) (Grant No. 2014CB340600)
文摘Air-gapped computers are isolated both logically and physically from all kinds of existing common communication channel, such as USB ports, wireless and wired net- works. Although the feasibility of infiltrating an air-gapped computer has been proved in recent years, data exfiltration from such sys- tems is still considered to be a challenging task. In this paper we present Powermittcr, a novel approach that can exfiltrate data through an air-gapped computer via its power adapter. Our method utilizes the switched-mode pow- er supply, which exists in all of the laptops, desktop computers and servers nowadays. We demonstrate that a malware can indirectly con- trol the electromagnetic emission frequency of the power supply by leveraging the CPU utili- zation. Furthermore, we show that the emitted signals can be received and demodulated by a dedicated device. We present the proof of con- cept design of the power covert channel and implement a prototype of Powermitter consist- ing of a transmitter and a receiver. The trans- mitter leaks out data by using a variant binary frequency shift keying modulation, and the emitted signal can be captured and decoded by software based virtual oscilloscope through such covert channel. We tested Powermitter on three different computers. The experiment re-suits show the feasibility of this power covert channel. We show that our method can also be used to leak data from different types of embedded systems which use switching power supply.
基金Projects(51305117,51178158)supported by the National Natural Science Foundation of ChinaProject(20130111120031)supported by the Specialized Research Fund for the Doctoral Program of Higher Education+1 种基金Project(2013M530230)supported by the China Postdoctoral Science FoundationProjects(2012HGQC0015,2011HGBZ0945)supported by the Fundamental Research Funds for the Central Universities,China
文摘A novel method of matching stiffness and continuous variable damping of an ECAS(electronically controlled air suspension) based on LQG(linear quadratic Gaussian) control was proposed to simultaneously improve the road-friendliness and ride comfort of a two-axle school bus.Taking account of the suspension nonlinearities and target-height-dependent variation in suspension characteristics,a stiffness model of the ECAS mounted on the drive axle of the bus was developed based on thermodynamics and the key parameters were obtained through field tests.By determining the proper range of the target height for the ECAS of the fully-loaded bus based on the design requirements of vehicle body bounce frequency,the control algorithm of the target suspension height(i.e.,stiffness) was derived according to driving speed and road roughness.Taking account of the nonlinearities of a continuous variable semi-active damper,the damping force was obtained through the subtraction of the air spring force from the optimum integrated suspension force,which was calculated based on LQG control.Finally,a GA(genetic algorithm)-based matching method between stepped variable damping and stiffness was employed as a benchmark to evaluate the effectiveness of the LQG-based matching method.Simulation results indicate that compared with the GA-based matching method,both dynamic tire force and vehicle body vertical acceleration responses are markedly reduced around the vehicle body bounce frequency employing the LQG-based matching method,with peak values of the dynamic tire force PSD(power spectral density) decreased by 73.6%,60.8% and 71.9% in the three cases,and corresponding reduction are 71.3%,59.4% and 68.2% for the vehicle body vertical acceleration.A strong robustness to variation of driving speed and road roughness is also observed for the LQG-based matching method.
基金supported by the National Research Foundation (NRF) of Korea through contract N-14-NMIR06
文摘Cloud computing is becoming a key factor in the market day by day. Therefore, many companies are investing or going to invest in this sector for development of large data centers. These data centers not only consume more energy but also produce greenhouse gases. Because of large amount of power consumption, data center providers go for different types of power generator to increase the profit margin which indirectly affects the environment. Several studies are carried out to reduce the power consumption of a data center. One of the techniques to reduce power consumption is virtualization. After several studies, it is stated that hardware plays a very important role. As the load increases, the power consumption of the CPU is also increased. Therefore, by extending the study of virtualization to reduce the power consumption, a hardware-based algorithm for virtual machine provisioning in a private cloud can significantly improve the performance by considering hardware as one of the important factors.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11004224 and 11204355)the National Basic Research Program of China (Grant No. 2011CB921601)the Program of "OneHundred Talented People" of the Chinese Academy of Sciences
文摘The study of ultracold Fermi gases has exploded a variety of experimental and theoretical research since the achievement of degenerate quantum gases in the lab,which expands the research range over atomic physics,condensed matter physics,astrophysics and particle physics.Using the Feshbach resonance,one can tune the attractive two-body interaction from weak to strong and thereby make a smooth crossover from the BCS superfluid of cooper pairs to the Bose Einstein condensate of bound molecules.In this crossover regime,the pairing effect plays a significant role in interpreting the interaction mechanism.Whenever the localized or delocalized pairing occurs at sufficiently low temperature,the single-particle energy will shift with respect to free atoms,due to the two-body or many-body interaction.Measuring the pairing gap can improve the understanding of the thermodynamics and hydrodynamics of the phase transition from the pseudogap to the superfluid,which will make an analogue to the high-temperature superconductivity in condensed matter.In this work,we will give a brief introduction to a novel radio-frequency(RF) spectroscopic measurement for pairing gap in an ultracold Fermi gas,which is currently widely used on the ultracold atomic table in the lab.In different interaction regimes of the BEC-BCS crossover,ultracold atoms are excited with a RF pulse and the characteristic behavior can be extracted from the spectrum.