Transformers utilizing HTS (high temperature superconductors) are considered as a timely invention. The number of power transformers age more than 30 years old and nearing retirement is increasing. If this window of...Transformers utilizing HTS (high temperature superconductors) are considered as a timely invention. The number of power transformers age more than 30 years old and nearing retirement is increasing. If this window of opportunity is not grabbed, there would be great reluctance to replace recently installed highly priced capital asset. Major projects of developing HTS transformers are well making progress in the United States, Europe, Japan, Korea and China which indicate the interest. The efforts must have been appropriately verified through the economic interest of the discounted losses. Consequently, it is very important to develop an understanding of the fundamental HTS transformer design issues that can provide guidance for developing practical devices of interest to the electric utility industry. The parameters of HTS transformer need to be validated before any effort is to carry out to model the behaviour of a distribution network under a range of conditions. The predicted performance and reliability of HTS transformers can then be verified through the network modelling and analysis calculation. The ultimate purpose is to furnish electric utilities precise information as to which HTS transformers work under various applications with greater technical efficiency and proven reliability.展开更多
This paper compares the estimated electromagnetic forces due to short circuits in power transformers using two computational models. The first model is based on approximate analytical expressions of the electromagneti...This paper compares the estimated electromagnetic forces due to short circuits in power transformers using two computational models. The first model is based on approximate analytical expressions of the electromagnetic lbrces as they have been compiled in earlier versions of the IEC standard 60076-5. The second model is based on a finite element model of the transformer using the software FEMM (Finite Element Method Magnetics). The paper shows how valid the analytical model is for design purposes. Results have been obtained and compared from both models in a number of actual power distribution transformers. It is possible to conclude that the analytical formulation provides satisfactory results for the design of power transformers compared to detailed finite element models. A tool has been designed for this purpose and the main features of it will be described in the paper.展开更多
文摘Transformers utilizing HTS (high temperature superconductors) are considered as a timely invention. The number of power transformers age more than 30 years old and nearing retirement is increasing. If this window of opportunity is not grabbed, there would be great reluctance to replace recently installed highly priced capital asset. Major projects of developing HTS transformers are well making progress in the United States, Europe, Japan, Korea and China which indicate the interest. The efforts must have been appropriately verified through the economic interest of the discounted losses. Consequently, it is very important to develop an understanding of the fundamental HTS transformer design issues that can provide guidance for developing practical devices of interest to the electric utility industry. The parameters of HTS transformer need to be validated before any effort is to carry out to model the behaviour of a distribution network under a range of conditions. The predicted performance and reliability of HTS transformers can then be verified through the network modelling and analysis calculation. The ultimate purpose is to furnish electric utilities precise information as to which HTS transformers work under various applications with greater technical efficiency and proven reliability.
文摘This paper compares the estimated electromagnetic forces due to short circuits in power transformers using two computational models. The first model is based on approximate analytical expressions of the electromagnetic lbrces as they have been compiled in earlier versions of the IEC standard 60076-5. The second model is based on a finite element model of the transformer using the software FEMM (Finite Element Method Magnetics). The paper shows how valid the analytical model is for design purposes. Results have been obtained and compared from both models in a number of actual power distribution transformers. It is possible to conclude that the analytical formulation provides satisfactory results for the design of power transformers compared to detailed finite element models. A tool has been designed for this purpose and the main features of it will be described in the paper.