This paper studies an existing 13.8 kilovolt distribution network which, serves an oil production field spread over an area of approximately 60 kilometers square, in order to locate any fault that may occur anywhere i...This paper studies an existing 13.8 kilovolt distribution network which, serves an oil production field spread over an area of approximately 60 kilometers square, in order to locate any fault that may occur anywhere in the network using fuzzy c-mean classification techniques. In addition, Sections 5 and 6 introduce two different methods for normalizing data and selecting the optimum number of clusters in order to classify data. Results and conclusions are given to show the feasibility for the suggested fault location method. Suggestion for future related research has been provided in Section 8.展开更多
This paper presents a wavelet-based technique for detection and classification of normal and abnormal conditions that occur on power distribution lines. The proposed technique depends on a sensitive fault detection pa...This paper presents a wavelet-based technique for detection and classification of normal and abnormal conditions that occur on power distribution lines. The proposed technique depends on a sensitive fault detection parameter (denoted DET) calculated from the wavelet multi-resolution decomposition of the three phase currents only. This parameter is fast and sensitive to any small changes in the current signal since it uses the square of the first and second details of the decomposed signals. The simulation results of this study clearly show that the proposed technique can be successfully used to detect and classify not only low-current faults that could not be detected by conventional overcurrent relays but also normal transients like load switching and inrush currents.展开更多
文摘This paper studies an existing 13.8 kilovolt distribution network which, serves an oil production field spread over an area of approximately 60 kilometers square, in order to locate any fault that may occur anywhere in the network using fuzzy c-mean classification techniques. In addition, Sections 5 and 6 introduce two different methods for normalizing data and selecting the optimum number of clusters in order to classify data. Results and conclusions are given to show the feasibility for the suggested fault location method. Suggestion for future related research has been provided in Section 8.
文摘This paper presents a wavelet-based technique for detection and classification of normal and abnormal conditions that occur on power distribution lines. The proposed technique depends on a sensitive fault detection parameter (denoted DET) calculated from the wavelet multi-resolution decomposition of the three phase currents only. This parameter is fast and sensitive to any small changes in the current signal since it uses the square of the first and second details of the decomposed signals. The simulation results of this study clearly show that the proposed technique can be successfully used to detect and classify not only low-current faults that could not be detected by conventional overcurrent relays but also normal transients like load switching and inrush currents.