相比电动汽车(electricvehicle,EV)慢充用户,大规模、随机快充负荷的接入将会带来更加严重的电网安全运行问题。从整体社会经济效益最大化的角度出发,仅单纯从电网侧增加基础设施建设并非最佳解决之道,有必要从用户角度研究有效的调度...相比电动汽车(electricvehicle,EV)慢充用户,大规模、随机快充负荷的接入将会带来更加严重的电网安全运行问题。从整体社会经济效益最大化的角度出发,仅单纯从电网侧增加基础设施建设并非最佳解决之道,有必要从用户角度研究有效的调度策略对电动汽车的快充行为进行引导。为此,基于未来智慧城市的场景下,提出了基于节点关键度的配网供电电压偏差指标(voltage deviation index based on node importance,VDINI)的概念,指出动态调整快充站充电服务费的手段,分析电动汽车用户对于快充站选择行为的影响因素,建立电动汽车用户基于自身效益的充电位置决策模型,从而说明通过调整各充电服务费的来对快充行为进行引导的可行性。在此基础上,根据需要满足的各种约束条件,制定各快充站快充服务费的求解流程,在保证充电站效益不变的同时,将电动汽车合理地引导至各个快充站,均衡区域内的充电负荷,实现空间上的有序快充,改善了配网的电能质量。算例仿真验证了所提充电服务费制定方法的合理性以及快充负荷引导策略的优越性。展开更多
Distribution networks face an increasing penetration of solar PV (photovoltaic) and small WTG (wind turbine generator) as well as other forms of micro-generation. To this scenario, one must add the dissemination o...Distribution networks face an increasing penetration of solar PV (photovoltaic) and small WTG (wind turbine generator) as well as other forms of micro-generation. To this scenario, one must add the dissemination of non-linear loads such as EV (electric vehicles). There is something in common between those loads and sources: the extensive use of power electronic converters with commutated switches. These devices may be a source of medium-to-high frequency harmonic distortion and their impact on the local distribution grid must be carefully assessed in order to evaluate their negative impacts on the network, on the existing conventional loads and also on other active devices. In this paper, methodologies to characterize effects such as: harmonics, network unbalances, damaging power line resonance conditions, and over/under voltages are described and applied to a real local grid configuration.展开更多
The interconnection of Embedded Generation (EG) in a distribution network would change the radiality of the convention power flows in the system. Instead of helping to reduce the system losses, it also improves the ...The interconnection of Embedded Generation (EG) in a distribution network would change the radiality of the convention power flows in the system. Instead of helping to reduce the system losses, it also improves the quality of the overall system network. However, improper allocation and sizing of its interconnection to the system could oppositely change those advantages. The total system may experience higher losses and instability. In this paper, a new technique to determine the optimal allocation of EG in distribution system by using Genetic Algorithm (GA) technique is proposed. The effectiveness of the technique is demonstrated using IEEE-69 bus distribution test system and simulated in MATLAB.展开更多
文摘相比电动汽车(electricvehicle,EV)慢充用户,大规模、随机快充负荷的接入将会带来更加严重的电网安全运行问题。从整体社会经济效益最大化的角度出发,仅单纯从电网侧增加基础设施建设并非最佳解决之道,有必要从用户角度研究有效的调度策略对电动汽车的快充行为进行引导。为此,基于未来智慧城市的场景下,提出了基于节点关键度的配网供电电压偏差指标(voltage deviation index based on node importance,VDINI)的概念,指出动态调整快充站充电服务费的手段,分析电动汽车用户对于快充站选择行为的影响因素,建立电动汽车用户基于自身效益的充电位置决策模型,从而说明通过调整各充电服务费的来对快充行为进行引导的可行性。在此基础上,根据需要满足的各种约束条件,制定各快充站快充服务费的求解流程,在保证充电站效益不变的同时,将电动汽车合理地引导至各个快充站,均衡区域内的充电负荷,实现空间上的有序快充,改善了配网的电能质量。算例仿真验证了所提充电服务费制定方法的合理性以及快充负荷引导策略的优越性。
文摘Distribution networks face an increasing penetration of solar PV (photovoltaic) and small WTG (wind turbine generator) as well as other forms of micro-generation. To this scenario, one must add the dissemination of non-linear loads such as EV (electric vehicles). There is something in common between those loads and sources: the extensive use of power electronic converters with commutated switches. These devices may be a source of medium-to-high frequency harmonic distortion and their impact on the local distribution grid must be carefully assessed in order to evaluate their negative impacts on the network, on the existing conventional loads and also on other active devices. In this paper, methodologies to characterize effects such as: harmonics, network unbalances, damaging power line resonance conditions, and over/under voltages are described and applied to a real local grid configuration.
文摘The interconnection of Embedded Generation (EG) in a distribution network would change the radiality of the convention power flows in the system. Instead of helping to reduce the system losses, it also improves the quality of the overall system network. However, improper allocation and sizing of its interconnection to the system could oppositely change those advantages. The total system may experience higher losses and instability. In this paper, a new technique to determine the optimal allocation of EG in distribution system by using Genetic Algorithm (GA) technique is proposed. The effectiveness of the technique is demonstrated using IEEE-69 bus distribution test system and simulated in MATLAB.