期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
关于B样条V·D性质护理
1
作者 杨家斌 朱方生 《武汉食品工业学院学报》 1994年第1期65-69,共5页
样条函数的变差缩减方法(简称V·D逼近)是利用B样条构造曲线的一种十分有效的方法。这种方法具有模拟被逼近曲线几何形态的特点、且计算简单、特别适用于自由形式的曲线和曲面的设计。古典的Bernstein多项式逼近是V&... 样条函数的变差缩减方法(简称V·D逼近)是利用B样条构造曲线的一种十分有效的方法。这种方法具有模拟被逼近曲线几何形态的特点、且计算简单、特别适用于自由形式的曲线和曲面的设计。古典的Bernstein多项式逼近是V·D逼近的特例。而V·D逼近的理论基础是B样条所具有的V·D的性质。本文采用与以往证明方法不同的途径、对B样条的V·D性质给出了一种纯代数的证明,该证明简单、自然。 展开更多
关键词 B样条 变差缩减 配置方阵 全正性 广义零点
下载PDF
关于B样条V·D性质的另一证明
2
作者 梅家斌 朱方生 《数学的实践与认识》 CSCD 北大核心 1995年第3期82-85,共4页
样条函数的变差缩减方法(简称V·D逼近)是利用B样条构造曲线的一种十分有效的方法。这种方法具有模拟被逼近曲线几何形态的特点,且计算简单,特别适用于自由形式的曲线和曲面的设计,古典的Bernstein多项式逼近是V·D逼近的特例,... 样条函数的变差缩减方法(简称V·D逼近)是利用B样条构造曲线的一种十分有效的方法。这种方法具有模拟被逼近曲线几何形态的特点,且计算简单,特别适用于自由形式的曲线和曲面的设计,古典的Bernstein多项式逼近是V·D逼近的特例,而V·D逼近的理论基础是B样条所具有的V·D性质。本文采用与以往证明不同的途径,对B样条的V·D性质给出了一种纯代数的证明。该证明简单、自然。 展开更多
关键词 B样条 配置方阵 全正性 变差缩减性质
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部