Voltage profiles of feeders with the connection of distributed generations(DGs) were investigated.A unified typical load distribution model was established.Based on this model,exact expressions of feeder voltage profi...Voltage profiles of feeders with the connection of distributed generations(DGs) were investigated.A unified typical load distribution model was established.Based on this model,exact expressions of feeder voltage profile with single and double DGs were derived and used to analyze the impact of DG's location and capacity on the voltage profile quantitatively.Then,a general formula of the voltage profile was derived.The limitation of single DG and necessity of multiple DGs for voltage regulation were also discussed.Through the simulation,voltage profiles of feeders with single and double DGs were compared.The voltage excursion rate is 7.40% for only one DG,while 2.48% and 2.36% for double DGs.It is shown that the feeder voltage can be retained in a more appropriate range with multiple DGs than with only one DG.Distributing the total capacity of DGs is better than concentrating it at one point.展开更多
This article investigates channel allocation for cognitive networks, which is difficult to obtain the optimal allocation distribution. We first study interferences between nodes in cognitive networks and establish the...This article investigates channel allocation for cognitive networks, which is difficult to obtain the optimal allocation distribution. We first study interferences between nodes in cognitive networks and establish the channel allocation model with interference constraints. Then we focus on the use of evolutionary algorithms to solve the optimal allocation distribution. We further consider that the search time can be reduced by means of parallel computing, and then a parallel algorithm based APO is proposed. In contrast with the existing algorithms, we decompose the allocation vector into a number of sub-vectors and search for optimal allocation distribution of sub-vector in parallel. In order to speed up converged rate and improve converged value, some typical operations of evolutionary algorithms are modified by two novel operators. Finally, simulation results show that the proposed algorithm drastically outperform other optimal solutions in term of the network utilization.展开更多
A good knowledge of midfoot biomechanics is important in understanding the biomechanics of the entire foot,but it has never been investigated thoroughly in the literature.This study carried out in vitro experiments an...A good knowledge of midfoot biomechanics is important in understanding the biomechanics of the entire foot,but it has never been investigated thoroughly in the literature.This study carried out in vitro experiments and finite element analysis to investigate the midfoot biomechanics.A foot-ankle finite element model simulating the mid-stance phase of the normal gait was developed and the model validated in in vitro experimental tests.Experiments used seven in vitro samples of fresh human cadavers.The simulation found that the first principal stress peaks of all midfoot bones occurred at the navicular bone and that the tensile force of the spring ligament was greater than that of any other ligament.The experiments showed that the longitudinal strain acting on the medial cuneiform bone was-26.2±10.8μ-strain,and the navicular strain was-240.0±169.1μ-strain along the longitudinal direction and 65.1±25.8μ-strain along the transverse direction.The anatomical position and the spring ligament both result in higher shear stress in the navicular bone.The load from the ankle joint to five branches of the forefoot is redistributed among the cuneiforms and cuboid bones.Further studies on the mechanism of loading redistribution will be helpful in understanding the biomechanics of the entire foot.展开更多
基金Projects(60904101,60972164) supported by the National Natural Science Foundation of ChinaProject(N090404009) supported by the Fundamental Research Funds for the Central UniversitiesProject(20090461187) supported by China Postdoctoral Science Foundation
文摘Voltage profiles of feeders with the connection of distributed generations(DGs) were investigated.A unified typical load distribution model was established.Based on this model,exact expressions of feeder voltage profile with single and double DGs were derived and used to analyze the impact of DG's location and capacity on the voltage profile quantitatively.Then,a general formula of the voltage profile was derived.The limitation of single DG and necessity of multiple DGs for voltage regulation were also discussed.Through the simulation,voltage profiles of feeders with single and double DGs were compared.The voltage excursion rate is 7.40% for only one DG,while 2.48% and 2.36% for double DGs.It is shown that the feeder voltage can be retained in a more appropriate range with multiple DGs than with only one DG.Distributing the total capacity of DGs is better than concentrating it at one point.
基金supported in part by the National Natural Science Foundation under Grant No.61072069National Science and Technology Major Project of the Ministry of Science and Technology of China under Grant No.2012ZX03003012
文摘This article investigates channel allocation for cognitive networks, which is difficult to obtain the optimal allocation distribution. We first study interferences between nodes in cognitive networks and establish the channel allocation model with interference constraints. Then we focus on the use of evolutionary algorithms to solve the optimal allocation distribution. We further consider that the search time can be reduced by means of parallel computing, and then a parallel algorithm based APO is proposed. In contrast with the existing algorithms, we decompose the allocation vector into a number of sub-vectors and search for optimal allocation distribution of sub-vector in parallel. In order to speed up converged rate and improve converged value, some typical operations of evolutionary algorithms are modified by two novel operators. Finally, simulation results show that the proposed algorithm drastically outperform other optimal solutions in term of the network utilization.
基金supported by the National Natural Science Foundation of China(11302154,11272273)China Postdoctoral Science Foundation(2013M530211)+1 种基金Opening Project of Shanghai Key Laboratory of Orthopaedic Implants(KFKT2013002)Fundamental Research Funds for the Central Universities
文摘A good knowledge of midfoot biomechanics is important in understanding the biomechanics of the entire foot,but it has never been investigated thoroughly in the literature.This study carried out in vitro experiments and finite element analysis to investigate the midfoot biomechanics.A foot-ankle finite element model simulating the mid-stance phase of the normal gait was developed and the model validated in in vitro experimental tests.Experiments used seven in vitro samples of fresh human cadavers.The simulation found that the first principal stress peaks of all midfoot bones occurred at the navicular bone and that the tensile force of the spring ligament was greater than that of any other ligament.The experiments showed that the longitudinal strain acting on the medial cuneiform bone was-26.2±10.8μ-strain,and the navicular strain was-240.0±169.1μ-strain along the longitudinal direction and 65.1±25.8μ-strain along the transverse direction.The anatomical position and the spring ligament both result in higher shear stress in the navicular bone.The load from the ankle joint to five branches of the forefoot is redistributed among the cuneiforms and cuboid bones.Further studies on the mechanism of loading redistribution will be helpful in understanding the biomechanics of the entire foot.