In acoustic logging-while-drilling (ALWD) finite difference in time domain (FDTD) simulations, large drill collar occupies, most of the fluid-filled borehole and divides the borehole fluid into two thin fluid colu...In acoustic logging-while-drilling (ALWD) finite difference in time domain (FDTD) simulations, large drill collar occupies, most of the fluid-filled borehole and divides the borehole fluid into two thin fluid columns (radius -27 mm). Fine grids and large computational models are required to model the thin fluid region between the tool and the formation. As a result, small time step and more iterations are needed, which increases the cumulative numerical error. Furthermore, due to high impedance contrast between the drill collar and fluid in the borehole (the difference is 〉30 times), the stability and efficiency of the perfectly matched layer (PML) scheme is critical to simulate complicated wave modes accurately. In this paper, we compared four different PML implementations in a staggered grid finite difference in time domain (FDTD) in the ALWD simulation, including field-splitting PML (SPML), multiaxial PML(M- PML), non-splitting PML (NPML), and complex frequency-shifted PML (CFS-PML). The comparison indicated that NPML and CFS-PML can absorb the guided wave reflection from the computational boundaries more efficiently than SPML and M-PML. For large simulation time, SPML, M-PML, and NPML are numerically unstable. However, the stability of M-PML can be improved further to some extent. Based on the analysis, we proposed that the CFS-PML method is used in FDTD to eliminate the numerical instability and to improve the efficiency of absorption in the PML layers for LWD modeling. The optimal values of CFS-PML parameters in the LWD simulation were investigated based on thousands of 3D simulations. For typical LWD cases, the best maximum value of the quadratic damping profile was obtained using one do. The optimal parameter space for the maximum value of the linear frequency-shifted factor (a0) and the scaling factor (β0) depended on the thickness of the PML layer. For typical formations, if the PML thickness is 10 grid points, the global error can be reduced to 〈1% using the optimal PML parameters, and the error will decrease as the PML thickness increases.展开更多
A new impregnated diamond bit was designed to solve the slipping problem when impregnated diamond bit was used for extra-hard, compact, and nonabrasive rock formation. Adding Si C grits into matrix, Si C grits can eas...A new impregnated diamond bit was designed to solve the slipping problem when impregnated diamond bit was used for extra-hard, compact, and nonabrasive rock formation. Adding Si C grits into matrix, Si C grits can easily be exfoliated from the surface of the matrix due to weak holding-force with matrix, which made the surface non-smooth. Three Ф36/24 mm laboratorial bits were manufactured to conduct a laboratory drilling test on zirconiacorundum refractory brick. The laboratory drilling test indicates that the abrasive resistance of the bit work layer is proportional to the Si C concentation. The higher the concentration, the weaker the abrasive resistance of matrix. The new impregnated diamond bit was applied to a mining area drilling construction in Jiangxi province, China. Field drilling application indicates that the ROP(rate of penetration) of the new bit is approximately two to three times that of the common bits. Compared with the common bits, the surface of the new bit has typical abrasive wear characteristics,and the metabolic rate of the diamond can be well matched to the wear rate of the matrix.展开更多
Uniform seed spacing is considered a fundamental factor in quality and yield for many crops and drill manufacturers continuously try to improve the accuracy in seed placement, according to the cultivation standard req...Uniform seed spacing is considered a fundamental factor in quality and yield for many crops and drill manufacturers continuously try to improve the accuracy in seed placement, according to the cultivation standard requirements. This paper reports the results of tests on the performances of a six row pneumatic precision drill in which the depression into each sowing unit is created by means of flexible pipes that do not start directly from the fan, as in most pneumatic drills, but from an air duct having the function of uniformly distributing the air flow along the working width. Field tests have been conducted, using three graded seeds, to evaluate the accuracy of the single seed metering system, according to ISO 7256/1 standard, and the uniformity of negative pressure, through the measurement of the distance between seeds in the furrow, under two speed conditions (5 and 8 km bl).展开更多
The absorbing boundary is the key in numerical simulation of borehole radar.Perfect match layer(PML) was chosen as the absorbing boundary in numerical simulation of GPR.But CPML(convolutional perfect match layer) appr...The absorbing boundary is the key in numerical simulation of borehole radar.Perfect match layer(PML) was chosen as the absorbing boundary in numerical simulation of GPR.But CPML(convolutional perfect match layer) approach that we have chosen has the advantage of being media independent.Beginning with the Maxwell equations in a two-dimensional structure,numerical formulas of finite-difference time-domain(FDTD) method with CPML boundary condition for transverse electric(TE) or transverse magnetic(TM) wave are presented in details.Also,there are three models for borehole-GPR simulation.By analyzing the simulation results,the features of targets in GPR are obtained,which can provide a better interpretation of real radar data.The results show that CPML is well suited for the simulation of borehole-GPR.展开更多
This paper investigates the effect of the location of testing area in residual stress measurement by Moiréinterferometry combined with hole-drilling method.The selection of the location of the testing area is ana...This paper investigates the effect of the location of testing area in residual stress measurement by Moiréinterferometry combined with hole-drilling method.The selection of the location of the testing area is analyzed from theory and experiment.In the theoretical study,the factors which affect the surface released radial strainεr were analyzed on the basis of the formulae of the hole-drilling method,and the relations between those factors andεr were established.By combining Moiréinterferometry with the hole-drilling method,the residual stress of interference-fit specimen was measured to verify the theoretical analysis.According to the analysis results,the testing area for minimizing the error of strain measurement is determined.Moreover,if the orientation of the maximum principal stress is known,the value of strain will be measured with higher precision by the Moiréinterferometry method.展开更多
基金supported by NSFC(No.41174118)one of the major state S&T special projects(No.2008ZX05020-004)+1 种基金a Postdoctoral Fellowship of China(No.2013M530106)China Scholarship Council(No.2010644006)
文摘In acoustic logging-while-drilling (ALWD) finite difference in time domain (FDTD) simulations, large drill collar occupies, most of the fluid-filled borehole and divides the borehole fluid into two thin fluid columns (radius -27 mm). Fine grids and large computational models are required to model the thin fluid region between the tool and the formation. As a result, small time step and more iterations are needed, which increases the cumulative numerical error. Furthermore, due to high impedance contrast between the drill collar and fluid in the borehole (the difference is 〉30 times), the stability and efficiency of the perfectly matched layer (PML) scheme is critical to simulate complicated wave modes accurately. In this paper, we compared four different PML implementations in a staggered grid finite difference in time domain (FDTD) in the ALWD simulation, including field-splitting PML (SPML), multiaxial PML(M- PML), non-splitting PML (NPML), and complex frequency-shifted PML (CFS-PML). The comparison indicated that NPML and CFS-PML can absorb the guided wave reflection from the computational boundaries more efficiently than SPML and M-PML. For large simulation time, SPML, M-PML, and NPML are numerically unstable. However, the stability of M-PML can be improved further to some extent. Based on the analysis, we proposed that the CFS-PML method is used in FDTD to eliminate the numerical instability and to improve the efficiency of absorption in the PML layers for LWD modeling. The optimal values of CFS-PML parameters in the LWD simulation were investigated based on thousands of 3D simulations. For typical LWD cases, the best maximum value of the quadratic damping profile was obtained using one do. The optimal parameter space for the maximum value of the linear frequency-shifted factor (a0) and the scaling factor (β0) depended on the thickness of the PML layer. For typical formations, if the PML thickness is 10 grid points, the global error can be reduced to 〈1% using the optimal PML parameters, and the error will decrease as the PML thickness increases.
基金Project(51074180)supported by the National Natural Science Foundation of China
文摘A new impregnated diamond bit was designed to solve the slipping problem when impregnated diamond bit was used for extra-hard, compact, and nonabrasive rock formation. Adding Si C grits into matrix, Si C grits can easily be exfoliated from the surface of the matrix due to weak holding-force with matrix, which made the surface non-smooth. Three Ф36/24 mm laboratorial bits were manufactured to conduct a laboratory drilling test on zirconiacorundum refractory brick. The laboratory drilling test indicates that the abrasive resistance of the bit work layer is proportional to the Si C concentation. The higher the concentration, the weaker the abrasive resistance of matrix. The new impregnated diamond bit was applied to a mining area drilling construction in Jiangxi province, China. Field drilling application indicates that the ROP(rate of penetration) of the new bit is approximately two to three times that of the common bits. Compared with the common bits, the surface of the new bit has typical abrasive wear characteristics,and the metabolic rate of the diamond can be well matched to the wear rate of the matrix.
文摘Uniform seed spacing is considered a fundamental factor in quality and yield for many crops and drill manufacturers continuously try to improve the accuracy in seed placement, according to the cultivation standard requirements. This paper reports the results of tests on the performances of a six row pneumatic precision drill in which the depression into each sowing unit is created by means of flexible pipes that do not start directly from the fan, as in most pneumatic drills, but from an air duct having the function of uniformly distributing the air flow along the working width. Field tests have been conducted, using three graded seeds, to evaluate the accuracy of the single seed metering system, according to ISO 7256/1 standard, and the uniformity of negative pressure, through the measurement of the distance between seeds in the furrow, under two speed conditions (5 and 8 km bl).
基金Project(41174061) supported by the National Natural Science Foundation of ChinaProject(2011QNZT011) supported by the Free Exploration Program of Central South University,China
文摘The absorbing boundary is the key in numerical simulation of borehole radar.Perfect match layer(PML) was chosen as the absorbing boundary in numerical simulation of GPR.But CPML(convolutional perfect match layer) approach that we have chosen has the advantage of being media independent.Beginning with the Maxwell equations in a two-dimensional structure,numerical formulas of finite-difference time-domain(FDTD) method with CPML boundary condition for transverse electric(TE) or transverse magnetic(TM) wave are presented in details.Also,there are three models for borehole-GPR simulation.By analyzing the simulation results,the features of targets in GPR are obtained,which can provide a better interpretation of real radar data.The results show that CPML is well suited for the simulation of borehole-GPR.
基金supported by the National Basic Research Program of China(Grant Nos.2010CB631005 and 2011CB606105)the National Natural Science Foundation of China(Grant Nos.11232008,91216301,11227801 and 11172151)Tsinghua University Initiative Scientific Research Program
文摘This paper investigates the effect of the location of testing area in residual stress measurement by Moiréinterferometry combined with hole-drilling method.The selection of the location of the testing area is analyzed from theory and experiment.In the theoretical study,the factors which affect the surface released radial strainεr were analyzed on the basis of the formulae of the hole-drilling method,and the relations between those factors andεr were established.By combining Moiréinterferometry with the hole-drilling method,the residual stress of interference-fit specimen was measured to verify the theoretical analysis.According to the analysis results,the testing area for minimizing the error of strain measurement is determined.Moreover,if the orientation of the maximum principal stress is known,the value of strain will be measured with higher precision by the Moiréinterferometry method.