为了降低三酚基甲烷型环氧树脂(TMP)的黏度,通过不同的合成工艺得到了低黏度芳香族超支化环氧树脂(AHBP),采用傅里叶变换红外光谱仪对其表征。将AHBP作为TMP稀释剂,研究了AHBP加入量对TMP/甲基纳迪克酸酐(MNA)体系性能的影响,并与传统...为了降低三酚基甲烷型环氧树脂(TMP)的黏度,通过不同的合成工艺得到了低黏度芳香族超支化环氧树脂(AHBP),采用傅里叶变换红外光谱仪对其表征。将AHBP作为TMP稀释剂,研究了AHBP加入量对TMP/甲基纳迪克酸酐(MNA)体系性能的影响,并与传统稀释剂1,4-丁二醇二缩水甘油醚(BDDGE)进行比较。采用热重分析仪及电子万能试验机对其性能测试。当AHBP含量为15%时,体系黏度为2800 m Pa·s左右,拉伸强度、弯曲强度、冲击强度分别提高了12%,13.2%,40%,起到了增韧效果,热失重5%时温度为313.9℃;而BDDGE/TMP/MNA体系的力学性能及热性能下降显著。结果表明相对于BDDGE,AHBP在不降低TMP力学性能的情况下能较好地降低TMP黏度。展开更多
A novel thermosetting resin system for superabrasives based on novolak and bismaleimide (BMI) was developed. The novolak resin was allylated and then copolymerized with BMI. The structure of allyl novolak and reacti...A novel thermosetting resin system for superabrasives based on novolak and bismaleimide (BMI) was developed. The novolak resin was allylated and then copolymerized with BMI. The structure of allyl novolak and reaction mechanism were analyzed by FFIR. Thermal and mechanical properties were characterized by using com- prehensive thermal analyzer (DSC-TG) and strength tester, respectively. The results showed that high molecular weight of novolak was advantageous for heat-resistance, but was unfavorable for the bending strength. High allyl content improved the heat-resistance but lowered the bending strength. When the molecular weight of novolak was 450 and allyl content was 50%, the best resin system with good heat-resistance and bending strength was obtained. It was suitable for the manufacturing of superabrasive tools.展开更多
A new kind of modified thermoset resins were synthesized by phase-transfer Williamson reaction from novolac resin and mixtures of allyl- and propargyl-chlorides. The compositions of the resins were defined by 1H NMR ...A new kind of modified thermoset resins were synthesized by phase-transfer Williamson reaction from novolac resin and mixtures of allyl- and propargyl-chlorides. The compositions of the resins were defined by 1H NMR (nuclear magnetic resonanse) spectroscopy and the dependence of the cured materials properties on the composition was established. Increase of a propargyl content resulted in char yield raise and the maximum value had been found for propargylated resin--58%. DSC (differential scanning calorimetry)-analysis of the resins has demonstrated that exothermic enthalpy of the curing process could be adjusted by varying the content of propargyl and allyl groups in the resin.展开更多
文摘为了降低三酚基甲烷型环氧树脂(TMP)的黏度,通过不同的合成工艺得到了低黏度芳香族超支化环氧树脂(AHBP),采用傅里叶变换红外光谱仪对其表征。将AHBP作为TMP稀释剂,研究了AHBP加入量对TMP/甲基纳迪克酸酐(MNA)体系性能的影响,并与传统稀释剂1,4-丁二醇二缩水甘油醚(BDDGE)进行比较。采用热重分析仪及电子万能试验机对其性能测试。当AHBP含量为15%时,体系黏度为2800 m Pa·s左右,拉伸强度、弯曲强度、冲击强度分别提高了12%,13.2%,40%,起到了增韧效果,热失重5%时温度为313.9℃;而BDDGE/TMP/MNA体系的力学性能及热性能下降显著。结果表明相对于BDDGE,AHBP在不降低TMP力学性能的情况下能较好地降低TMP黏度。
文摘A novel thermosetting resin system for superabrasives based on novolak and bismaleimide (BMI) was developed. The novolak resin was allylated and then copolymerized with BMI. The structure of allyl novolak and reaction mechanism were analyzed by FFIR. Thermal and mechanical properties were characterized by using com- prehensive thermal analyzer (DSC-TG) and strength tester, respectively. The results showed that high molecular weight of novolak was advantageous for heat-resistance, but was unfavorable for the bending strength. High allyl content improved the heat-resistance but lowered the bending strength. When the molecular weight of novolak was 450 and allyl content was 50%, the best resin system with good heat-resistance and bending strength was obtained. It was suitable for the manufacturing of superabrasive tools.
文摘A new kind of modified thermoset resins were synthesized by phase-transfer Williamson reaction from novolac resin and mixtures of allyl- and propargyl-chlorides. The compositions of the resins were defined by 1H NMR (nuclear magnetic resonanse) spectroscopy and the dependence of the cured materials properties on the composition was established. Increase of a propargyl content resulted in char yield raise and the maximum value had been found for propargylated resin--58%. DSC (differential scanning calorimetry)-analysis of the resins has demonstrated that exothermic enthalpy of the curing process could be adjusted by varying the content of propargyl and allyl groups in the resin.