The in vitro inhibitory effects of chrysophanol and physcion on CYP1B1 were explored,utilizing ethoxyresorufin as the substrate.The inhibition kinetics of CYP1B1 by these compounds were assessed with escalating doses ...The in vitro inhibitory effects of chrysophanol and physcion on CYP1B1 were explored,utilizing ethoxyresorufin as the substrate.The inhibition kinetics of CYP1B1 by these compounds were assessed with escalating doses of ethoxyresorufin.Both chrysophanol(IC_(50)(0.47±0.01)μmol·L^(-1))and physcion(IC_(50)(0.35±0.02)μmol·L^(-1))significantly reduce the catalytic efficiency of CYP1B1.The V_(max)and K_(m)values are determined to be(51.9912±10.0547)pmol·μg^(-1)(protein)·min^(-1) and(0.9663±0.2987)nmol·L^(-1)for chrysophanol,and(45.4227±1.9978)pmol·μg^(-1)(protein)·min^(-1) and(0.4367±0.0386)nmol·L^(-1)for physcion,respectively.Kinetic analysis reveals that chrysophanol and physcion exert mixed inhibitory effects on CYP1B1.This mixed inhibition is primarily characterized by the compounds’ability to competitively bind to the active sites of CYP1B1,as well as potentially through non-competitive mechanisms,thereby reducing the enzyme’s catalytic efficiency.Molecular docking studies are conducted to elucidate the interaction between anthraquinone derivatives and CYP1B1,indicating that these compounds may inhibit CYP1B1 activity by binding to their active sites.The demonstrated capacity of chrysophanol and physcion to inhibit CYP1B1 enzymatic function unveils a potential anticancer mechanism,advancing our comprehension of how the structure of anthraquinone derivatives correlates with CYP1B1 inhibition and paving the way for developing innovative cancer treatments.展开更多
In the present study, the modified (non-Keggin-type) aqueous solutions of Mo-V-phosphoric heteropoly acids HaPzMoyVx,Oh (HPA-x') were applied as homogeneous catalysts for the two-stage oxidation of TMP (2,3,6-tr...In the present study, the modified (non-Keggin-type) aqueous solutions of Mo-V-phosphoric heteropoly acids HaPzMoyVx,Oh (HPA-x') were applied as homogeneous catalysts for the two-stage oxidation of TMP (2,3,6-trimethylphenol) by oxygen into TMQ (2,3,5-trimethyl-l,4-benzoquinone), the latter being the key intermediate in the synthesis of vitamin E. The TMQ yield was analyzed regarding solvent type, reaction temperature, molar HPA-x ':TMP ratio, and the concentration of vanadium (V) in the HPA-x' solution. The TMQ yield was found to depend strongly on the catalyst redox potential and the rate of electron transfer. The results obtained enabled to establish the optimal reaction conditions as well as to suggest the reaction mechanism. In the target reaction, which proceeds in the two-phase system, the TMQ yield is higher than 99%. After phase separation, the catalyst is rapidly regenerated by oxygen and reused.展开更多
A phytochemical investigation on the stems and rhizomes of Sinomenium acutum led to the isolation of 19 compounds, including three phenanthrenes, six anthraquinones, and ten phenolic derivatives. The structures of the...A phytochemical investigation on the stems and rhizomes of Sinomenium acutum led to the isolation of 19 compounds, including three phenanthrenes, six anthraquinones, and ten phenolic derivatives. The structures of the isolated compounds were elucidated by analysis of the MS and NMR spectroscopic data and comparison with the literature. Compounds 1 and 2 are two new natural products, and their 1H and 13C NMR spectral data were fully assigned for the first time, with the help of2D NMR. All of the isolates were obtained from genus Sinomenium for the first time and the phenanthrene and anthraquinone are the structure type first reported from this genus plants.展开更多
基金Supported by the Heilongjiang Administration of Traditional Chinese Medicine(ZHY2020-078)the Education Department of Heilongjiang Province(SJGY20210830)。
文摘The in vitro inhibitory effects of chrysophanol and physcion on CYP1B1 were explored,utilizing ethoxyresorufin as the substrate.The inhibition kinetics of CYP1B1 by these compounds were assessed with escalating doses of ethoxyresorufin.Both chrysophanol(IC_(50)(0.47±0.01)μmol·L^(-1))and physcion(IC_(50)(0.35±0.02)μmol·L^(-1))significantly reduce the catalytic efficiency of CYP1B1.The V_(max)and K_(m)values are determined to be(51.9912±10.0547)pmol·μg^(-1)(protein)·min^(-1) and(0.9663±0.2987)nmol·L^(-1)for chrysophanol,and(45.4227±1.9978)pmol·μg^(-1)(protein)·min^(-1) and(0.4367±0.0386)nmol·L^(-1)for physcion,respectively.Kinetic analysis reveals that chrysophanol and physcion exert mixed inhibitory effects on CYP1B1.This mixed inhibition is primarily characterized by the compounds’ability to competitively bind to the active sites of CYP1B1,as well as potentially through non-competitive mechanisms,thereby reducing the enzyme’s catalytic efficiency.Molecular docking studies are conducted to elucidate the interaction between anthraquinone derivatives and CYP1B1,indicating that these compounds may inhibit CYP1B1 activity by binding to their active sites.The demonstrated capacity of chrysophanol and physcion to inhibit CYP1B1 enzymatic function unveils a potential anticancer mechanism,advancing our comprehension of how the structure of anthraquinone derivatives correlates with CYP1B1 inhibition and paving the way for developing innovative cancer treatments.
文摘In the present study, the modified (non-Keggin-type) aqueous solutions of Mo-V-phosphoric heteropoly acids HaPzMoyVx,Oh (HPA-x') were applied as homogeneous catalysts for the two-stage oxidation of TMP (2,3,6-trimethylphenol) by oxygen into TMQ (2,3,5-trimethyl-l,4-benzoquinone), the latter being the key intermediate in the synthesis of vitamin E. The TMQ yield was analyzed regarding solvent type, reaction temperature, molar HPA-x ':TMP ratio, and the concentration of vanadium (V) in the HPA-x' solution. The TMQ yield was found to depend strongly on the catalyst redox potential and the rate of electron transfer. The results obtained enabled to establish the optimal reaction conditions as well as to suggest the reaction mechanism. In the target reaction, which proceeds in the two-phase system, the TMQ yield is higher than 99%. After phase separation, the catalyst is rapidly regenerated by oxygen and reused.
基金National Natural Sciences Foundation of Chin(NS FCGrant Nos.81222051 and 81473106)National Key Technology R&D Program"New Drug Innovation"of China(Gran No s.2012ZX09301002-002-002 and 2012ZX09304-005)
文摘A phytochemical investigation on the stems and rhizomes of Sinomenium acutum led to the isolation of 19 compounds, including three phenanthrenes, six anthraquinones, and ten phenolic derivatives. The structures of the isolated compounds were elucidated by analysis of the MS and NMR spectroscopic data and comparison with the literature. Compounds 1 and 2 are two new natural products, and their 1H and 13C NMR spectral data were fully assigned for the first time, with the help of2D NMR. All of the isolates were obtained from genus Sinomenium for the first time and the phenanthrene and anthraquinone are the structure type first reported from this genus plants.