A novel epoxidized soybean oil-toughened-phenolic resin(ESO-T-PR)has been synthesized by etheri- fication graft and multi-amine curing ESO.Fourier transform infrared spectroscopy(FTIR)was adopted to investi- gate its ...A novel epoxidized soybean oil-toughened-phenolic resin(ESO-T-PR)has been synthesized by etheri- fication graft and multi-amine curing ESO.Fourier transform infrared spectroscopy(FTIR)was adopted to investi- gate its molecular structure and scan electron microscope(SEM)was used to observe the micro morphology of its impact fracture surface.This ESO-T-PR was adopted as the matrix resin to prepare paper copper clad laminate (P-CCL)and the properties of resulting P-CCL are found superior to the related Chinese National Standard.The toughing mechanism was investigated by comparing the impact strength,solderleaching resistance,flexural strength, peeling strength and morphology of this ESO-T-PR with those of other two ESO modified phenolic resins.It is demonstrated that during the synthesizing process of ESO-T-PR,the phenol hydroxyl is etherified by ESO or ESO epoxy resin prepolymer(ESO chain extension polymer)and the long ESO epoxy resin chain segments enhance the crosslink density of ESO-T-PR and consequently improve the impact toughness and solderleaching resistance of P-CCL made of ESO-T-PR.The ESO-T-PR is a cheap matrix resin with excellent properties to make P-CCL(elec- tric guide board).展开更多
Mesocarbon microbeads (MCMB) were prepared from coal tar pitch modified by phenolic resin and from the same pitch modified by phenolic resin and hexamethylenetetramine at 440℃ for lh. By investigating the morpholog...Mesocarbon microbeads (MCMB) were prepared from coal tar pitch modified by phenolic resin and from the same pitch modified by phenolic resin and hexamethylenetetramine at 440℃ for lh. By investigating the morphology of mesophase spheres and the structure of the MCMB carbonized at 1000℃ for lh using scanning electron microscope (SEM) and XRD, it was found that phenolic resin accelerated the formation and coalescence of mesophase spheres. Some of the obtained MCMB were hi- or tri-spheres with the distorted microtextural carbon layers. Hexamethylenetetramine in the pitch modified by phenolic resin accelerated the condensation of phenolic resin and consequently expedited the combination of mesophase spheres, which was proved by the formation of some tetra-spheres. Owing to the cross-linkage of the additives, MCMB with complex structure were obtained.展开更多
基金Supported by the Key Science&Technology Item of Guangdong Province(TC05B372-6).
文摘A novel epoxidized soybean oil-toughened-phenolic resin(ESO-T-PR)has been synthesized by etheri- fication graft and multi-amine curing ESO.Fourier transform infrared spectroscopy(FTIR)was adopted to investi- gate its molecular structure and scan electron microscope(SEM)was used to observe the micro morphology of its impact fracture surface.This ESO-T-PR was adopted as the matrix resin to prepare paper copper clad laminate (P-CCL)and the properties of resulting P-CCL are found superior to the related Chinese National Standard.The toughing mechanism was investigated by comparing the impact strength,solderleaching resistance,flexural strength, peeling strength and morphology of this ESO-T-PR with those of other two ESO modified phenolic resins.It is demonstrated that during the synthesizing process of ESO-T-PR,the phenol hydroxyl is etherified by ESO or ESO epoxy resin prepolymer(ESO chain extension polymer)and the long ESO epoxy resin chain segments enhance the crosslink density of ESO-T-PR and consequently improve the impact toughness and solderleaching resistance of P-CCL made of ESO-T-PR.The ESO-T-PR is a cheap matrix resin with excellent properties to make P-CCL(elec- tric guide board).
基金Supported by the National Natural Science Foundation of China (No.50172034).
文摘Mesocarbon microbeads (MCMB) were prepared from coal tar pitch modified by phenolic resin and from the same pitch modified by phenolic resin and hexamethylenetetramine at 440℃ for lh. By investigating the morphology of mesophase spheres and the structure of the MCMB carbonized at 1000℃ for lh using scanning electron microscope (SEM) and XRD, it was found that phenolic resin accelerated the formation and coalescence of mesophase spheres. Some of the obtained MCMB were hi- or tri-spheres with the distorted microtextural carbon layers. Hexamethylenetetramine in the pitch modified by phenolic resin accelerated the condensation of phenolic resin and consequently expedited the combination of mesophase spheres, which was proved by the formation of some tetra-spheres. Owing to the cross-linkage of the additives, MCMB with complex structure were obtained.