Naloxone is a well-known opioid antagonist indicated for the treatment of CNS (central nervous system) and respiratory depression induced by natural or synthetic opioid in adults and neonates whose mothers have rece...Naloxone is a well-known opioid antagonist indicated for the treatment of CNS (central nervous system) and respiratory depression induced by natural or synthetic opioid in adults and neonates whose mothers have received opioids. While it has been reported that an injection of 0.2 mg/mL of naloxone hydrochloride is physically and chemically stable, data on photostability on continuous i.v. infusion of 0.2 mg/mL of naloxone hydrochloride has not been reported. Therefore, a method was required for assessment of naloxone hydrochloride photostability. A high performance LC-MS (liquid chromatography/mass spectrometry) method was established to evaluate the photostability of naloxone hydrochloride. Injections of naloxone hydrochloride in 0.9% sodium chloride were exposed to artificial light and stored at room temperature (22 ~C) and 37 ~C. Naloxone losses up to 9.79% of its initial concentration when exposed to light at room temperature for 192 h, but the degradation increased up to 14.91% as the storage temperature increase. The disappearance of naloxone hydrochloride was correlated with the appearance of nor-oxymorphonedegradant. Naloxone hydrochloride is photosensitive and degradation increased at highly temperature and light intensity. Therefore, naloxone i.v. infusion solutions should either be protected from light and/or be frequently replaced when being administered to patients.展开更多
文摘Naloxone is a well-known opioid antagonist indicated for the treatment of CNS (central nervous system) and respiratory depression induced by natural or synthetic opioid in adults and neonates whose mothers have received opioids. While it has been reported that an injection of 0.2 mg/mL of naloxone hydrochloride is physically and chemically stable, data on photostability on continuous i.v. infusion of 0.2 mg/mL of naloxone hydrochloride has not been reported. Therefore, a method was required for assessment of naloxone hydrochloride photostability. A high performance LC-MS (liquid chromatography/mass spectrometry) method was established to evaluate the photostability of naloxone hydrochloride. Injections of naloxone hydrochloride in 0.9% sodium chloride were exposed to artificial light and stored at room temperature (22 ~C) and 37 ~C. Naloxone losses up to 9.79% of its initial concentration when exposed to light at room temperature for 192 h, but the degradation increased up to 14.91% as the storage temperature increase. The disappearance of naloxone hydrochloride was correlated with the appearance of nor-oxymorphonedegradant. Naloxone hydrochloride is photosensitive and degradation increased at highly temperature and light intensity. Therefore, naloxone i.v. infusion solutions should either be protected from light and/or be frequently replaced when being administered to patients.