A novel marine microbial esterase PHE14 was cloned from the genome of Pseudomonas oryzihabit‐ans HUP022 isolated from the deep sea of the western Pacific Ocean. Esterase PHE14 exhibited very good tolerance to most or...A novel marine microbial esterase PHE14 was cloned from the genome of Pseudomonas oryzihabit‐ans HUP022 isolated from the deep sea of the western Pacific Ocean. Esterase PHE14 exhibited very good tolerance to most organic solvents, surfactants and metal ions tested, thus making it a good esterase candidate for organic synthesis that requires an organic solvent, surfactants or metal ions. Esterase PHE14 was utilized as a biocatalyst in the asymmetric synthesis of D‐methyl lactate by enzymatic kinetic resolution. D‐methyl lactate is a key chiral chemical. Contrary to some previous reports, the addition of an organic solvent and surfactants in the enzymatic reaction did not have a beneficial effect on the kinetic resolution catalyzed by esterase PHE14. Our study is the first report on the preparation of the enantiomerically enriched product D‐methyl lactate by enzymatic kinetic resolution. The desired enantiomerically enriched product D‐methyl lactate was obtained with a high enantiomeric excess of 99%and yield of 88.7%after process optimization. The deep sea mi‐crobial esterase PHE14 is a green biocatalyst with very good potential in asymmetric synthesis in industry and can replace the traditional organic synthesis that causes pollution to the environment.展开更多
The thermal decomposition characteristics of methyl oleate were preliminarily investigated under nitrogen atmo-sphere by a thermogravimetric analyzer when the ester was heated at a heating rate of 10℃/min from room t...The thermal decomposition characteristics of methyl oleate were preliminarily investigated under nitrogen atmo-sphere by a thermogravimetric analyzer when the ester was heated at a heating rate of 10℃/min from room temperature to 600℃. Furthermore, the pyrolytic and kinetic characteristics of methyl oleate were intensively studied at different heating rates. The gaseous species obtained during thermal decomposition were also identiifed by the TG-FTIR coupling analysis. The results showed that the pyrolysis of methyl oleate proceeded in three stages, viz. the drying stage, the main pyrolysis stage and the residual pyrolysis stage. The initial decomposition temperature, the maximum weight loss temperature, the peak decomposition temperature and the rate of maximum weight loss of methyl oleate increased with the increasing heating rates. Gaseous CO, CO2 and H2O were the typical decomposition products from pyrolysis of methyl oleate. In addition, a kinetic model for thermal decomposition of methyl oleate was built up based on the experimental results using the Coats-Redfern integral method and the multiplelinear regression method. The activation energy, the preexponential factor, the reaction order and the kinetic equation for thermal decomposition of methyl oleate were obtained. Comparison of the experimental data with the calculated ones and analysis of statistical errors of pyrolysis ratios demonstrated that the kinetic model was reliable for studying the pyrolysis of methyl oleate. Finally, the kinetic compensation effect between the preexponential factors and the activation energy in the pyrolysis of methyl oleate was also conifrmed.展开更多
A magnetic CoFe2O4/Cd S nanocomposite was prepared via one-step hydrothermal decomposition of cadmium diethanoldithiocarbamate complex on the surface of CoFe2O4 nanoparticles at a low temperature of 200 ℃.The nanocom...A magnetic CoFe2O4/Cd S nanocomposite was prepared via one-step hydrothermal decomposition of cadmium diethanoldithiocarbamate complex on the surface of CoFe2O4 nanoparticles at a low temperature of 200 ℃.The nanocomposite was characterised by X-ray diffraction(XRD),Fourier transform infrared spectroscopy(FT-IR),scanning electron microscopy,energy-dispersive X-ray spectroscopy(EDX),UV-visible spectroscopy,transmission electron microscopy(TEM),N2 gas sorption analysis,X-ray photoelectron spectroscopy(XPS),and vibrating sample magnetometry.The FT-IR,XRD,EDX and XPS results confirmed the formation of the CoFe2O4/Cd S nanocomposite.Based on the TEM analysis,the CoFe2O4/Cd S nanocomposite constituted nearly uniform,sphere-like nanoparticles of ~20 nm in size.The optical absorption spectrum of the CoFe2O4/Cd S nanocomposite displayed a band gap of 2.21 e V,which made it a suitable candidate for application in sono/photocatalytic degradation of organic pollutants.Accordingly,the sonocatalytic activity of the CoFe2O4/Cd S nanocomposite was evaluated towards the H2O2-assisted degradation of methylene blue,rhodamine B,and methyl orange under ultrasonic irradiation.The nanocomposite displayed excellent sonocatalytic activity towards the degradation of all dyes examined—the dyes were completely decomposed within 5–9 min.Furthermore,a comparison study revealed that the CoFe2O4/Cd S nanocomposite is a more efficient sonocatalyst than pure Cd S;thus,adopting the nanocomposite approach is an excellent means to improve the sonoactivity of Cd S.Moreover,the magnetic properties displayed by the CoFe2O4/Cd S nanocomposite allow easy retrieval of the catalyst from the reaction mixture for subsequent uses.展开更多
The kinetics of the decomposition of dimethylhexane-1,6-dicarbamate to 1,6-hexamethylene diisocyanate was studied. A consecutive reaction model was established and the reaction orders for the two steps were confirmed ...The kinetics of the decomposition of dimethylhexane-1,6-dicarbamate to 1,6-hexamethylene diisocyanate was studied. A consecutive reaction model was established and the reaction orders for the two steps were confirmed to be 1 and 1.3 by the integral test method and the numerical differential method, respectively. The activation energies of the two steps were (56.94 4±5.90) kJ·mol^-1 and (72.07±3.47) kJ·mol^-1 with the frequency factors exp( 12.53±1.42) min^- 1 and ( 14.254±0.84) tool^-0.33. L^0.33·min^-1, respectively. Based on the kinetic model obtained, the progress of the reaction can be calculated under given conditions.展开更多
In this work,a novel alcohol alkali hydrolysis method was explored for the preparation of terephthalic acid(TPA)from waste polyethylene terephthalate(PET).First,a series of single factor experiments on the depolymeriz...In this work,a novel alcohol alkali hydrolysis method was explored for the preparation of terephthalic acid(TPA)from waste polyethylene terephthalate(PET).First,a series of single factor experiments on the depolymerization rate of waste PET bottles and the yield of TPA were conducted to determine the optimized experimental conditions,in terms of reaction time,reaction temperature,dosage of ethylene glycol and sodium bicarbonate,amount of distilled water and stirring rate.Then IR spectra and elemental analysis were carried out for the characterization of obtained product.Under optimal experimental conditions,over 98%PET can be depolymerized into the target product(TPA)and the purity and yield of TPA are over 97%and 94%,respectively.Both the experimental and analytical results support a feasible process for the preparation of TPA from waste PET.It is expected that this alcohol alkali hydrolysis method can promise an effective way for the sustainable recycling of waste PET.展开更多
Pyrolysis of polytrimethylene terephthalate(PTT) fiber has been investigated by pyrolysis gas chromatography-mass spectroscopy in the temperature range from 400℃ to 750℃ in order to observe the possible effect of th...Pyrolysis of polytrimethylene terephthalate(PTT) fiber has been investigated by pyrolysis gas chromatography-mass spectroscopy in the temperature range from 400℃ to 750℃ in order to observe the possible effect of the temperature on its composition of pyrolysates.At 400℃,pyrolysis of molecular chain could occur,only 13 pyrolysates could be identified.The trimethylene moieties bound to the macromolecular core by ester bonds are cleaved at around 400℃.At 550℃-750℃,pyrolysis of molecular chain could completely take place,46 pyrolysates could be found.As the temperature increases,the compositions of pyrolysate are distinctly increased.Several compounds,especially benzoic acid,monopropenyl-p-phthalate,2-propenyl benzoate,di-2-propenyl ester,1,4-benzenedicarboxylic acid,benzene,1,5-hexadiene,biphenyl and 1,3-propanediol dibenzoate could be formed.The thermal degradation mechanism,which is determined by structure and amount of the thermal decomposition products,are described.During pyrolysis of polytrimethylene terephthalate,polymeric chain scissions take place a peeling reaction as a successive removal of the dimer units from the polymeric chain.The chain scissions are followed by the elimination reaction,linkage action and secondary reactions,which bring about a variety fragment.展开更多
A different pressure thermally coupled reactive distillation column(DPT-RD) for the hydrolysis of methyl acetate(Me Ac) is developed, and its design and optimization procedures are investigated. The sensitivity analys...A different pressure thermally coupled reactive distillation column(DPT-RD) for the hydrolysis of methyl acetate(Me Ac) is developed, and its design and optimization procedures are investigated. The sensitivity analysis is carried out to minimize the energy consumption, which is associated with the total annual cost(TAC). The influence of the proposed DPTRD scheme on energy consumption and economic efficiency are evaluated in comparison with the conventional reactive distillation column(CRD). Both the DPT-RD and CRD are simulated with the Aspen Plus?, and it can be observed that for the DPT-RD the energy consumption and the TAC are reduced, and the thermodynamic efficiency is increased as compared with the CRD process.展开更多
Abstract The removal of cypermethrin with a red macroalga, Gracilaria lemaneiformis, was studied under laboratory conditions. Results showed that the residue contents with G. lemaneiformis were significantly lower tha...Abstract The removal of cypermethrin with a red macroalga, Gracilaria lemaneiformis, was studied under laboratory conditions. Results showed that the residue contents with G. lemaneiformis were significantly lower than those corresponding groups without the algal thalli after 96 h treatment. The removal rates decreased with increasing concentrations, which were about 50% without G. lemaneiformis after 96h exposure, and increased to 89%, 73%, and 66% in flasks with G. lemaneiformis at the concentrations of 10, 100, and 1000 gg L-1, respectively. The amount of biosorption (absorption and adsorption) by G. lemaneiformis increased with the increasing concentration and exposure time. Adsorption was the main process for the removal by G. lemaneiformis, which accounted for 75%-97% of the total biosorption. However, biosorption only contributed 0.5%-19.3% to the total losses of cypermethrin, which was more efficient under the low concentration. Natural losses contributed the largest portion of losses, which was over 65% in all treatments during the experiment. The unknown pathway of removal, which might be the bio-decomposed by microorganisms attaching the algal thalli, also contributed a lot to the total removal. The results suggested that cultivation of G. lemaneiformis could significantly remove cypermethrin, especially at low concentrations, and large-scale cultivation of G. lemaneiformis has considerable potential of biorestoration of eutrophic and cypermethrin-poUuted coastal sea areas.展开更多
This paper describes syntheses and structure determination of four lanthanide complexes [Nd(2-Cl-4-FBA) 3 phen] 2 (1, 2-Cl-4-FBA = 2-chloro-4-fluorobenzoate, phen = 1,10-phenanthroline), [Ln(2,5-DClBA) 3 phen] 2 (Ln =...This paper describes syntheses and structure determination of four lanthanide complexes [Nd(2-Cl-4-FBA) 3 phen] 2 (1, 2-Cl-4-FBA = 2-chloro-4-fluorobenzoate, phen = 1,10-phenanthroline), [Ln(2,5-DClBA) 3 phen] 2 (Ln = Sm(2) and Tb(3), 2,5-DClBA = 2,5-dichlorobenzoate) and [Sm(2-Cl-4,5-DFBA) 3 (phen)(H 2 O)] 2 (4, (2-Cl-4,5-DFBA = 2-chloro-4,5-difluorobenzo- ate). The complexes were characterized by elemental analysis, infrared and ultraviolet spectra, and X-ray single-crystal diffraction. In the molecular structures of 1 4, two Ln 3+ ions are linked by four carboxyl groups, with two of them in a bridging bidentate mode and the other two in a bridging-chelating tridentate mode, forming four binuclear molecules. In addition, each Ln 3+ ion is also chelated to one phen molecule and one carboxyl group in the complexes, except each Sm 3+ ion in 4 which is bonded to one carboxyl group by unidentate mode and one H 2 O molecule. There are two different coordination polyhedrons for each Nd 3+ ion in the two similar molecular structures of 1 and they are a distorted monocapped square antiprismatic and a distorted tricapped triangular prism conformation, respectively. The coordination polyhedron for each Ln 3+ ion in 2 4 is a nine-coordinated distorted mono-capped square antiprismatic conformation. The complex 3 exhibits green luminescence under the radiation of UV light. The thermal decomposition behaviors of the complexes have been discussed by simultaneous TG/DSC-FTIR technique. The 3D surface graphs for the FTIR spectra of the evolved gases were recorded and the gaseous products were identified by the typical IR spectra obtained at different temperatures from the 3D surface graphs. Meanwhile, we discussed the nonisothermal kinetics of 1 4 by the integral isoconversional non-linear (NL-INT) method.展开更多
Phthalate esters (PAEs) are extensively applied in industry, and they migrate to environment during the process of production, employ, and treatment and axe difficult to be degraded in nature. However, some microorg...Phthalate esters (PAEs) are extensively applied in industry, and they migrate to environment during the process of production, employ, and treatment and axe difficult to be degraded in nature. However, some microorganisms could use them as the carbon source to growth. In this study, an Acinetobacter sp. strain LMB-5, capable of utilizing PAEs, was isolated from a vegetable greenhouse soil. The degradation capability of strain LMB-5 was also investigated by incubation in mineral salt medium containing different PAEs, dimethyl phthalate (DMP), diethyl phthalate (DEP), di-n-butyl phthalate (DBP), and di-(2-ethylhexyl) phthalate (DEHP). The strain could grow well with DMP, DEP, DBP, and DEHP. When the concentration of DBP increased from 100 to 400 mg L-1, the half-life extended from 9.5 to 15.5 h. In the concentration range of DBP, the degradation ability of strain LMB-5 could be described by first-order kinetics. During the biodegradation of DBP, three intermediates, 1,2-benzenedicaxboxylic acid,butyl methyl ester, DMP, and phthalic acid (PA) were detected, and the proposed pathway of DBP was identified. By analysis of bioinformatics, one esterase was cloned from the genome of LMB-5 and expressed in Escherichia coll. It displayed an ability to break the ester bonds of DBP. The enzyme exhibited maximal activity at pH 7.0 and 40 ℃ with DBP as the substrate. It was activated by Cu2+ and Fe3+ and had a high activity in the presence of low concentrations of methanol or dimethylsulfoxide (each 10%, volume:volume). The Acinetobacter sp. strain LMB-5 may make a contribution to the remediation of soils polluted by PAEs in the future.展开更多
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA11030404)Key Project from the Chinese Academy of Sciences (KGZD-EW-606)+1 种基金the National Natural Science Foundation of China (21302199)Guangzhou Science and Technology Plan Projects (201510010012)~~
文摘A novel marine microbial esterase PHE14 was cloned from the genome of Pseudomonas oryzihabit‐ans HUP022 isolated from the deep sea of the western Pacific Ocean. Esterase PHE14 exhibited very good tolerance to most organic solvents, surfactants and metal ions tested, thus making it a good esterase candidate for organic synthesis that requires an organic solvent, surfactants or metal ions. Esterase PHE14 was utilized as a biocatalyst in the asymmetric synthesis of D‐methyl lactate by enzymatic kinetic resolution. D‐methyl lactate is a key chiral chemical. Contrary to some previous reports, the addition of an organic solvent and surfactants in the enzymatic reaction did not have a beneficial effect on the kinetic resolution catalyzed by esterase PHE14. Our study is the first report on the preparation of the enantiomerically enriched product D‐methyl lactate by enzymatic kinetic resolution. The desired enantiomerically enriched product D‐methyl lactate was obtained with a high enantiomeric excess of 99%and yield of 88.7%after process optimization. The deep sea mi‐crobial esterase PHE14 is a green biocatalyst with very good potential in asymmetric synthesis in industry and can replace the traditional organic synthesis that causes pollution to the environment.
基金the financial support provided by the National Natural Science Foundation of China(Project No.51375491)the Natural Science Foundation of Chongqing(No.CSTC,2014 JCYAA 50021)
文摘The thermal decomposition characteristics of methyl oleate were preliminarily investigated under nitrogen atmo-sphere by a thermogravimetric analyzer when the ester was heated at a heating rate of 10℃/min from room temperature to 600℃. Furthermore, the pyrolytic and kinetic characteristics of methyl oleate were intensively studied at different heating rates. The gaseous species obtained during thermal decomposition were also identiifed by the TG-FTIR coupling analysis. The results showed that the pyrolysis of methyl oleate proceeded in three stages, viz. the drying stage, the main pyrolysis stage and the residual pyrolysis stage. The initial decomposition temperature, the maximum weight loss temperature, the peak decomposition temperature and the rate of maximum weight loss of methyl oleate increased with the increasing heating rates. Gaseous CO, CO2 and H2O were the typical decomposition products from pyrolysis of methyl oleate. In addition, a kinetic model for thermal decomposition of methyl oleate was built up based on the experimental results using the Coats-Redfern integral method and the multiplelinear regression method. The activation energy, the preexponential factor, the reaction order and the kinetic equation for thermal decomposition of methyl oleate were obtained. Comparison of the experimental data with the calculated ones and analysis of statistical errors of pyrolysis ratios demonstrated that the kinetic model was reliable for studying the pyrolysis of methyl oleate. Finally, the kinetic compensation effect between the preexponential factors and the activation energy in the pyrolysis of methyl oleate was also conifrmed.
基金the Lorestan University and Iran Nanotechnology Initiative Council (INIC) for their financial support
文摘A magnetic CoFe2O4/Cd S nanocomposite was prepared via one-step hydrothermal decomposition of cadmium diethanoldithiocarbamate complex on the surface of CoFe2O4 nanoparticles at a low temperature of 200 ℃.The nanocomposite was characterised by X-ray diffraction(XRD),Fourier transform infrared spectroscopy(FT-IR),scanning electron microscopy,energy-dispersive X-ray spectroscopy(EDX),UV-visible spectroscopy,transmission electron microscopy(TEM),N2 gas sorption analysis,X-ray photoelectron spectroscopy(XPS),and vibrating sample magnetometry.The FT-IR,XRD,EDX and XPS results confirmed the formation of the CoFe2O4/Cd S nanocomposite.Based on the TEM analysis,the CoFe2O4/Cd S nanocomposite constituted nearly uniform,sphere-like nanoparticles of ~20 nm in size.The optical absorption spectrum of the CoFe2O4/Cd S nanocomposite displayed a band gap of 2.21 e V,which made it a suitable candidate for application in sono/photocatalytic degradation of organic pollutants.Accordingly,the sonocatalytic activity of the CoFe2O4/Cd S nanocomposite was evaluated towards the H2O2-assisted degradation of methylene blue,rhodamine B,and methyl orange under ultrasonic irradiation.The nanocomposite displayed excellent sonocatalytic activity towards the degradation of all dyes examined—the dyes were completely decomposed within 5–9 min.Furthermore,a comparison study revealed that the CoFe2O4/Cd S nanocomposite is a more efficient sonocatalyst than pure Cd S;thus,adopting the nanocomposite approach is an excellent means to improve the sonoactivity of Cd S.Moreover,the magnetic properties displayed by the CoFe2O4/Cd S nanocomposite allow easy retrieval of the catalyst from the reaction mixture for subsequent uses.
基金the National Key Technology R&D Program(2013BAC11B03)the Knowledge Innovation Fund of Chinese Academy of Science(KGCX2-YW-215-2)the National Natural Science Foundation of China(21476244)
文摘The kinetics of the decomposition of dimethylhexane-1,6-dicarbamate to 1,6-hexamethylene diisocyanate was studied. A consecutive reaction model was established and the reaction orders for the two steps were confirmed to be 1 and 1.3 by the integral test method and the numerical differential method, respectively. The activation energies of the two steps were (56.94 4±5.90) kJ·mol^-1 and (72.07±3.47) kJ·mol^-1 with the frequency factors exp( 12.53±1.42) min^- 1 and ( 14.254±0.84) tool^-0.33. L^0.33·min^-1, respectively. Based on the kinetic model obtained, the progress of the reaction can be calculated under given conditions.
基金Project(2016TP1007)supported by the Hunan Provincial Science and Technology Plan,China
文摘In this work,a novel alcohol alkali hydrolysis method was explored for the preparation of terephthalic acid(TPA)from waste polyethylene terephthalate(PET).First,a series of single factor experiments on the depolymerization rate of waste PET bottles and the yield of TPA were conducted to determine the optimized experimental conditions,in terms of reaction time,reaction temperature,dosage of ethylene glycol and sodium bicarbonate,amount of distilled water and stirring rate.Then IR spectra and elemental analysis were carried out for the characterization of obtained product.Under optimal experimental conditions,over 98%PET can be depolymerized into the target product(TPA)and the purity and yield of TPA are over 97%and 94%,respectively.Both the experimental and analytical results support a feasible process for the preparation of TPA from waste PET.It is expected that this alcohol alkali hydrolysis method can promise an effective way for the sustainable recycling of waste PET.
文摘Pyrolysis of polytrimethylene terephthalate(PTT) fiber has been investigated by pyrolysis gas chromatography-mass spectroscopy in the temperature range from 400℃ to 750℃ in order to observe the possible effect of the temperature on its composition of pyrolysates.At 400℃,pyrolysis of molecular chain could occur,only 13 pyrolysates could be identified.The trimethylene moieties bound to the macromolecular core by ester bonds are cleaved at around 400℃.At 550℃-750℃,pyrolysis of molecular chain could completely take place,46 pyrolysates could be found.As the temperature increases,the compositions of pyrolysate are distinctly increased.Several compounds,especially benzoic acid,monopropenyl-p-phthalate,2-propenyl benzoate,di-2-propenyl ester,1,4-benzenedicarboxylic acid,benzene,1,5-hexadiene,biphenyl and 1,3-propanediol dibenzoate could be formed.The thermal degradation mechanism,which is determined by structure and amount of the thermal decomposition products,are described.During pyrolysis of polytrimethylene terephthalate,polymeric chain scissions take place a peeling reaction as a successive removal of the dimer units from the polymeric chain.The chain scissions are followed by the elimination reaction,linkage action and secondary reactions,which bring about a variety fragment.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.21276279,21476261)the Key Technologies Development Project of Qingdao Economic and Technological Development Zone(Grant No.2013-1-57)+1 种基金the Fundamental Research Funds for the Central Universities(No.14CX05030ANo.14CX06108A).
文摘A different pressure thermally coupled reactive distillation column(DPT-RD) for the hydrolysis of methyl acetate(Me Ac) is developed, and its design and optimization procedures are investigated. The sensitivity analysis is carried out to minimize the energy consumption, which is associated with the total annual cost(TAC). The influence of the proposed DPTRD scheme on energy consumption and economic efficiency are evaluated in comparison with the conventional reactive distillation column(CRD). Both the DPT-RD and CRD are simulated with the Aspen Plus?, and it can be observed that for the DPT-RD the energy consumption and the TAC are reduced, and the thermodynamic efficiency is increased as compared with the CRD process.
基金financially supported by the National Key Technology R&D Program(No.2012BA C07B05)by the National Natural Science Founda tion of China(No.41276154)
文摘Abstract The removal of cypermethrin with a red macroalga, Gracilaria lemaneiformis, was studied under laboratory conditions. Results showed that the residue contents with G. lemaneiformis were significantly lower than those corresponding groups without the algal thalli after 96 h treatment. The removal rates decreased with increasing concentrations, which were about 50% without G. lemaneiformis after 96h exposure, and increased to 89%, 73%, and 66% in flasks with G. lemaneiformis at the concentrations of 10, 100, and 1000 gg L-1, respectively. The amount of biosorption (absorption and adsorption) by G. lemaneiformis increased with the increasing concentration and exposure time. Adsorption was the main process for the removal by G. lemaneiformis, which accounted for 75%-97% of the total biosorption. However, biosorption only contributed 0.5%-19.3% to the total losses of cypermethrin, which was more efficient under the low concentration. Natural losses contributed the largest portion of losses, which was over 65% in all treatments during the experiment. The unknown pathway of removal, which might be the bio-decomposed by microorganisms attaching the algal thalli, also contributed a lot to the total removal. The results suggested that cultivation of G. lemaneiformis could significantly remove cypermethrin, especially at low concentrations, and large-scale cultivation of G. lemaneiformis has considerable potential of biorestoration of eutrophic and cypermethrin-poUuted coastal sea areas.
基金the National Natural Science Foundation of China (21073053,21073052 and 20773034)the Natural Science Foundation of Hebei Province (B2012205022)
文摘This paper describes syntheses and structure determination of four lanthanide complexes [Nd(2-Cl-4-FBA) 3 phen] 2 (1, 2-Cl-4-FBA = 2-chloro-4-fluorobenzoate, phen = 1,10-phenanthroline), [Ln(2,5-DClBA) 3 phen] 2 (Ln = Sm(2) and Tb(3), 2,5-DClBA = 2,5-dichlorobenzoate) and [Sm(2-Cl-4,5-DFBA) 3 (phen)(H 2 O)] 2 (4, (2-Cl-4,5-DFBA = 2-chloro-4,5-difluorobenzo- ate). The complexes were characterized by elemental analysis, infrared and ultraviolet spectra, and X-ray single-crystal diffraction. In the molecular structures of 1 4, two Ln 3+ ions are linked by four carboxyl groups, with two of them in a bridging bidentate mode and the other two in a bridging-chelating tridentate mode, forming four binuclear molecules. In addition, each Ln 3+ ion is also chelated to one phen molecule and one carboxyl group in the complexes, except each Sm 3+ ion in 4 which is bonded to one carboxyl group by unidentate mode and one H 2 O molecule. There are two different coordination polyhedrons for each Nd 3+ ion in the two similar molecular structures of 1 and they are a distorted monocapped square antiprismatic and a distorted tricapped triangular prism conformation, respectively. The coordination polyhedron for each Ln 3+ ion in 2 4 is a nine-coordinated distorted mono-capped square antiprismatic conformation. The complex 3 exhibits green luminescence under the radiation of UV light. The thermal decomposition behaviors of the complexes have been discussed by simultaneous TG/DSC-FTIR technique. The 3D surface graphs for the FTIR spectra of the evolved gases were recorded and the gaseous products were identified by the typical IR spectra obtained at different temperatures from the 3D surface graphs. Meanwhile, we discussed the nonisothermal kinetics of 1 4 by the integral isoconversional non-linear (NL-INT) method.
基金supported by the National Natural Science Foundation of China (No. 31401592)
文摘Phthalate esters (PAEs) are extensively applied in industry, and they migrate to environment during the process of production, employ, and treatment and axe difficult to be degraded in nature. However, some microorganisms could use them as the carbon source to growth. In this study, an Acinetobacter sp. strain LMB-5, capable of utilizing PAEs, was isolated from a vegetable greenhouse soil. The degradation capability of strain LMB-5 was also investigated by incubation in mineral salt medium containing different PAEs, dimethyl phthalate (DMP), diethyl phthalate (DEP), di-n-butyl phthalate (DBP), and di-(2-ethylhexyl) phthalate (DEHP). The strain could grow well with DMP, DEP, DBP, and DEHP. When the concentration of DBP increased from 100 to 400 mg L-1, the half-life extended from 9.5 to 15.5 h. In the concentration range of DBP, the degradation ability of strain LMB-5 could be described by first-order kinetics. During the biodegradation of DBP, three intermediates, 1,2-benzenedicaxboxylic acid,butyl methyl ester, DMP, and phthalic acid (PA) were detected, and the proposed pathway of DBP was identified. By analysis of bioinformatics, one esterase was cloned from the genome of LMB-5 and expressed in Escherichia coll. It displayed an ability to break the ester bonds of DBP. The enzyme exhibited maximal activity at pH 7.0 and 40 ℃ with DBP as the substrate. It was activated by Cu2+ and Fe3+ and had a high activity in the presence of low concentrations of methanol or dimethylsulfoxide (each 10%, volume:volume). The Acinetobacter sp. strain LMB-5 may make a contribution to the remediation of soils polluted by PAEs in the future.