To investigate a new glycosylation method. Methods In the presence of TMSOTfas catalyst, 1-O-(3, 5-dinitrobenzoyl)-2, 3, 4, 6-tetra-O-benzyl-α-D-glucopyranose 1 reacted with aseries of carboxylic acid, phenols, alcoh...To investigate a new glycosylation method. Methods In the presence of TMSOTfas catalyst, 1-O-(3, 5-dinitrobenzoyl)-2, 3, 4, 6-tetra-O-benzyl-α-D-glucopyranose 1 reacted with aseries of carboxylic acid, phenols, alcohols and saccharides respectively to give the correspondingglycosylation products. The compounds were determined by ~1H NMR and ^(13)C NMR spectra. ResultsThe α-glu-co-pyranosides and related oligosaccharides were prepared in high yields. Conclusion The3, 5-dinitro-benzoyl group was found to be a good leaving group at the anomeric position andO-glucopyranosides and oligosaccharides were stereoselectively synthesized in good yield.展开更多
The kinetics of the decomposition of dimethylhexane-1,6-dicarbamate to 1,6-hexamethylene diisocyanate was studied. A consecutive reaction model was established and the reaction orders for the two steps were confirmed ...The kinetics of the decomposition of dimethylhexane-1,6-dicarbamate to 1,6-hexamethylene diisocyanate was studied. A consecutive reaction model was established and the reaction orders for the two steps were confirmed to be 1 and 1.3 by the integral test method and the numerical differential method, respectively. The activation energies of the two steps were (56.94 4±5.90) kJ·mol^-1 and (72.07±3.47) kJ·mol^-1 with the frequency factors exp( 12.53±1.42) min^- 1 and ( 14.254±0.84) tool^-0.33. L^0.33·min^-1, respectively. Based on the kinetic model obtained, the progress of the reaction can be calculated under given conditions.展开更多
Microglial activation plays an important role in a panel of neurological disorders such as multiple sclerosis(MS) and Parkinson's disease(PD),and is a key target for developing therapeutic strategies for these dis...Microglial activation plays an important role in a panel of neurological disorders such as multiple sclerosis(MS) and Parkinson's disease(PD),and is a key target for developing therapeutic strategies for these diseases.Ketogenic diet (KD),which is able to inhibit microglial activation in substantia nigra pars compacta of mice,has been shown effective in a mouse model of PD,possibly through increasing D-β-hydroxybutyrate(D-β-HB),a major component of ketone bodies.To verify this,we developed an in vitro model of microglia activation with a microglia line,BV-2,and investigated how D-β-HB have an effect on the LPS-stimulated BV-2 cells.We found D-β-HB is able to recover the cell viability,and inhibit the production of inflammatory mediators and cytokines such as ROS,nitrite,IL-1β,TNF-α,and IL-6,which otherwise were increased in LPS-stimulated BV-2 cells.We conclude that the LPS induced BV-2 cells activation is a valid in vitro model of microglia activation.D-β-HB is able to suppress the activation of BV-2 cells, which might account for one of the possible reasons of KD therapy on the PD model.展开更多
In a stainless steel autoclave,the synthesis kinetics of dimethyl carbonate(DMC) from urea and methanol was separately investigated without catalyst and with Zn-containing catalyst.Without catalyst,for the first react...In a stainless steel autoclave,the synthesis kinetics of dimethyl carbonate(DMC) from urea and methanol was separately investigated without catalyst and with Zn-containing catalyst.Without catalyst,for the first reaction of DMC synthesis(the reaction of urea with methanol to methyl carbamate(MC)),the reaction kinetics can be described as the first order with respect to the concentrations of both methanol and urea.For the second reaction of DMC synthesis(the reaction of MC with methanol to DMC),the results exhibit characteristics of zero-order reaction.For Zn-containing catalyst,the first reaction is neglected in the kinetics model since its rate is much faster than the second reaction.The macro-kinetic parameters of the second reaction are obtained by fitting the experimental data to a pseudo-homogenous model,in which a side reaction in forming process of DMC is incorporated since it decreases the yield of DMC drastically at high temperature.The activation energy of the reaction from MC to DMC is 104 kJ/mol while that of the side reaction of DMC is 135 kJ/mol.The highest yield of DMC is 23%.展开更多
The mechanism of ester hydrolysis has been extensively studied; however, the precise function of active-site residues in promoting catalysis is nuclear. We describe here the structural models for the complex of a cata...The mechanism of ester hydrolysis has been extensively studied; however, the precise function of active-site residues in promoting catalysis is nuclear. We describe here the structural models for the complex of a catalytic sntibody Fv fragment with a phosphonate transition -state analogue, constructed by using gene cloning, sequencing and molecular modeling, mainly based on a known X-ray structure of a catalytic atibody. Hydrophobic and electrostatic analyses of the Fv/analog and Fv/substrate interaction suggest the hydrolysis mechanism: In L91 and Tyr H97 play important roles to stabilize the β-naphthyl group of hapten through r-stack; His H35 donates a pair of free electrons at the atom NEZ to an active water and let it to be a partial hydroxide, which attacks the carbon atom of the carbonyl group of the substrate. Both His H35 and Arg L96 can form hydrogen bonds and stabilize the Anoinc tetrahedral intermediate formed during turnover. This mechanism emphasizes that an active water bridge may be formed during hydrolysis process.展开更多
The solubilities of trimethylolethane in butanol,methyl acetate,ethyl acetate as well as in mixed solvents of(methanol+ethyl acetate) and(ethanol+ethyl acetate) were measured with the gravimetric method in the tempera...The solubilities of trimethylolethane in butanol,methyl acetate,ethyl acetate as well as in mixed solvents of(methanol+ethyl acetate) and(ethanol+ethyl acetate) were measured with the gravimetric method in the temperature range from 283.15 K to 318.15 K under atmosphere pressure.The experiment results showed that the solubility of trimethylolethane increased with the temperature,or along with the concentration of methanol or ethanol in the solvents of(methanol+ethyl acetate) and(ethanol + ethyl acetate).In addition,the experiment values were correlated by the van't Hoff equation,Modi fied Apelblat Equation,λh Equation,CNIBS/R-K equation and Jouyban–Acree Model.The Modi fied Apelblat Equation provided the best fitting results of the solubility data of TME in the pure solvents while the CNIBS/R-K model showed the best estimation of the solubility in the binary solvent mixtures.Furthermore,the density functional theory(DFT) calculations showed that solubility in different solvents related to the strength of the interaction between the trimethylolethane and the solvent molecules.Finally,the standard molar enthalpy and molar entropy of trimethylolethane during the dissolving process was also calculated by Modi fied Apelblat equation in this work.展开更多
A series of segmented polyether-polyester polyurethane with amorphous hydrophilic soft segment domains were prepared from 4,4'- diphenylmethane diisocyanate (MDI), polybutylene adipate (Glycol) 2000 (PBA2000), and...A series of segmented polyether-polyester polyurethane with amorphous hydrophilic soft segment domains were prepared from 4,4'- diphenylmethane diisocyanate (MDI), polybutylene adipate (Glycol) 2000 (PBA2000), and polyethylene glycol 1000 (PEG1000), with 1,4-butanediol (BDO) as the chain extender. Furthermore, several representative properties of the polyurethanes, such as moisture permeability, water resistance, hydrophilic property, and phase inversion temperature, were investigated. The studies show that the structure and concentration of soft segment have a remarkable effect on the main application properties of polyurethane. On the contrary, the functional properties of the polyurethane are almost not affected by its hard segment.展开更多
We proposed a novel method of fabricating polydimethylsiloxane (PDMS) microfluidic chip polymer master molds in this paper. The method mainly includes two steps. First, a stainless steel slice was laser etched to form...We proposed a novel method of fabricating polydimethylsiloxane (PDMS) microfluidic chip polymer master molds in this paper. The method mainly includes two steps. First, a stainless steel slice was laser etched to form a metal model. Then, the organic solution of poly(methyl methacrylate) (PMMA) was casted onto the metal model to fabricate the PMMA master which subsequently would be used to fabricate PDMS chips. We systematically researched different laser parameters influencing the surface status of microchannels and obtained optimized etching parameters. We investigated and optimized the organic solution composition of PMMA while casting chip masters, and developed a method to form fine polymer masters using two different viscosity solutions to cast the model in turn, and studied the repeatable replication. Then, we investigated physical performance of this chip and evaluated the practicability by analyzing Rhodamine B. Compared with present methods, the proposed method does not need photolithography on photoresistant and chemical etching. The entire fabricating progress is simple, fast, low-cost and can be controlled easily. Only several minutes are required to make a metal model, 3 hours for a PMMA master, and one day for PDMS chips.展开更多
Flexible photodetectors have become a focus of current researches because they may offer some unique applications in various new areas that require flexible, lightweight, and mechanical shock-resistive sensing element...Flexible photodetectors have become a focus of current researches because they may offer some unique applications in various new areas that require flexible, lightweight, and mechanical shock-resistive sensing elements. In this work, we designed flexible organic-inorganic hybrid photodetectors on various flexible substrates, including polyethylene terephthalate (PET), common Sellotape and polydimethylsiloxane (PDMS), with n-type phenyl-C61-butyric acid methyl ester (PCBM) and p-type pearl-like GaP nanowires (NWs) as the active materials. The as-fabricated hybrid devices exhibited an optimized performance superior to the device made of pristine GaP NWs, with a fast response time (43 ms) and high on/off ratio (-170). Under different bending conditions, the flexible hybrid photodetectors demonstrated excellent flexibility and electrical stability, which make them very promising for further large-scale, high sensitivity and high speed photodetector applications.展开更多
The highly potent antitumor agent ansamitocin P3 is a macrolactam isolated from Actinosynnema pretiosum ATCC 31565. A 120-kb DNA fragment was previously identified as the ansamitocin biosynthetic gene cluster, and con...The highly potent antitumor agent ansamitocin P3 is a macrolactam isolated from Actinosynnema pretiosum ATCC 31565. A 120-kb DNA fragment was previously identified as the ansamitocin biosynthetic gene cluster, and contains genes for polyketide assembly, precursor synthesis, post-polyketide synthesis modification, and regulation. Within the biosynthetic gene cluster, asm8 encodes an 1117-amino-acid protein with a high degree of similarity to the large ATP-binding LuxR family-type regulators. In the current study, we determined that inactivation of asm8 by gene replacement in ATCC 31565 resulted in the complete loss of ansamitocin production, and that complementation with a cloned asm8 gene restored ansamitocin biosynthesis. Interestingly, the disruption of asm8 decreased the transcription of genes responsible for 3-amino-5-hydroxybenzoate (AHBA) formation, the starter unit required for ansamitocin biosynthesis. Subsequently, feeding of exogenous AHBA to the asm8 mutant restored ansamitocin biosynthesis, which showed that Asm8 is a specific positive regulator in AHBA biosynthesis. In addition, investigation of asm8 homologs identified two new ansamitocin producers, and inactivation of the asm8 homolog in A. pretiosum ATCC 31280 abolished ansamitocin production in this strain. Characterization of the positive regulator Asm8 and discovery of the two new ansamitocin producers paves the way for further improving production of this important antitumor agent.展开更多
The aerothermal performance of a trailing edge (TE) internal cooling system of a high pressure gas turbine blade was evaluated under stationary and rotating conditions. The investigated geometry consists of a 30:1 ...The aerothermal performance of a trailing edge (TE) internal cooling system of a high pressure gas turbine blade was evaluated under stationary and rotating conditions. The investigated geometry consists of a 30:1 scaled model reproducing a typical wedge shaped discharge duct with one row of enlarged pedestals. The airflow pattern inside the device simulates a highly loaded rotor blade cooling scheme with a 90 [deg] turning flow from the radial hub inlet to the tangential TE outlet. Two different tip configurations were tested, the first one with a completely closed section, the second one with a 5 holes outlet surfaces discharging at ambient pressure. In order to assess rotation effects, a rotating test rig, composed of a rotating ann holding both the PMMA TE model and the instru mentation, was purposely developed and manufactured. A thin Inconel heating foil and wide band Thermochromic Liquid Crystals are used to perform steady state heat transfer measurements on the blade pres sure side. A rotary joint ensures the pneumatic connection between the blower and the rotating apparatus; more over several slip rings are used for both instrumentation power supply and thermocouple connection. A parallel CFD analysis involving steadystate RANS modeling was conducted to allow an insight of the flow field inside the redirecting channel and the interpedestal ducts to better interpret the developing vortical structures. LowReynolds grid clustering permits to integrate up to the wall both the momentum and the thermal boundary layer. Calculations were performed by means of an inhouse developed pressure based solver exploiting the kco SST turbulence model implemented in the framework of the opensource finite volume discretization toolbox OpenFOAM~. Analyzed flow conditions correspond to Reynolds number of 20000 in the hub inlet section and angular speed varies to obtain rotation numbers in the range from 0 to 0.3. The orientation of the rotation axis is orthogonal to the heated surface as to resemble a 90 [deg] blade metal angle. Results are reported in terms of de tailed heat transfer coefficient 2D maps on the suction side surface as well as spanwise profiles inside the pedestal ducts.展开更多
文摘To investigate a new glycosylation method. Methods In the presence of TMSOTfas catalyst, 1-O-(3, 5-dinitrobenzoyl)-2, 3, 4, 6-tetra-O-benzyl-α-D-glucopyranose 1 reacted with aseries of carboxylic acid, phenols, alcohols and saccharides respectively to give the correspondingglycosylation products. The compounds were determined by ~1H NMR and ^(13)C NMR spectra. ResultsThe α-glu-co-pyranosides and related oligosaccharides were prepared in high yields. Conclusion The3, 5-dinitro-benzoyl group was found to be a good leaving group at the anomeric position andO-glucopyranosides and oligosaccharides were stereoselectively synthesized in good yield.
基金the National Key Technology R&D Program(2013BAC11B03)the Knowledge Innovation Fund of Chinese Academy of Science(KGCX2-YW-215-2)the National Natural Science Foundation of China(21476244)
文摘The kinetics of the decomposition of dimethylhexane-1,6-dicarbamate to 1,6-hexamethylene diisocyanate was studied. A consecutive reaction model was established and the reaction orders for the two steps were confirmed to be 1 and 1.3 by the integral test method and the numerical differential method, respectively. The activation energies of the two steps were (56.94 4±5.90) kJ·mol^-1 and (72.07±3.47) kJ·mol^-1 with the frequency factors exp( 12.53±1.42) min^- 1 and ( 14.254±0.84) tool^-0.33. L^0.33·min^-1, respectively. Based on the kinetic model obtained, the progress of the reaction can be calculated under given conditions.
文摘Microglial activation plays an important role in a panel of neurological disorders such as multiple sclerosis(MS) and Parkinson's disease(PD),and is a key target for developing therapeutic strategies for these diseases.Ketogenic diet (KD),which is able to inhibit microglial activation in substantia nigra pars compacta of mice,has been shown effective in a mouse model of PD,possibly through increasing D-β-hydroxybutyrate(D-β-HB),a major component of ketone bodies.To verify this,we developed an in vitro model of microglia activation with a microglia line,BV-2,and investigated how D-β-HB have an effect on the LPS-stimulated BV-2 cells.We found D-β-HB is able to recover the cell viability,and inhibit the production of inflammatory mediators and cytokines such as ROS,nitrite,IL-1β,TNF-α,and IL-6,which otherwise were increased in LPS-stimulated BV-2 cells.We conclude that the LPS induced BV-2 cells activation is a valid in vitro model of microglia activation.D-β-HB is able to suppress the activation of BV-2 cells, which might account for one of the possible reasons of KD therapy on the PD model.
基金Project(2010ZC034) supported by the Science Foundation of Yunnan Province,ChinaProject(20105314120005) supported by the Research Fund for Doctor Program of Higher Education of China+2 种基金Project(11-12-609) supported by the Open Foundation of State Key Laboratory of Coal Conversion,ChinaProject(KKJD201051012) supported by the Scientific Research Fund of Yunnan Provincial Education Department,ChinaProject(2009-096) supported by the Analysis and Measure Foundation of Kunming University of Scienceand Technology,China
文摘In a stainless steel autoclave,the synthesis kinetics of dimethyl carbonate(DMC) from urea and methanol was separately investigated without catalyst and with Zn-containing catalyst.Without catalyst,for the first reaction of DMC synthesis(the reaction of urea with methanol to methyl carbamate(MC)),the reaction kinetics can be described as the first order with respect to the concentrations of both methanol and urea.For the second reaction of DMC synthesis(the reaction of MC with methanol to DMC),the results exhibit characteristics of zero-order reaction.For Zn-containing catalyst,the first reaction is neglected in the kinetics model since its rate is much faster than the second reaction.The macro-kinetic parameters of the second reaction are obtained by fitting the experimental data to a pseudo-homogenous model,in which a side reaction in forming process of DMC is incorporated since it decreases the yield of DMC drastically at high temperature.The activation energy of the reaction from MC to DMC is 104 kJ/mol while that of the side reaction of DMC is 135 kJ/mol.The highest yield of DMC is 23%.
文摘The mechanism of ester hydrolysis has been extensively studied; however, the precise function of active-site residues in promoting catalysis is nuclear. We describe here the structural models for the complex of a catalytic sntibody Fv fragment with a phosphonate transition -state analogue, constructed by using gene cloning, sequencing and molecular modeling, mainly based on a known X-ray structure of a catalytic atibody. Hydrophobic and electrostatic analyses of the Fv/analog and Fv/substrate interaction suggest the hydrolysis mechanism: In L91 and Tyr H97 play important roles to stabilize the β-naphthyl group of hapten through r-stack; His H35 donates a pair of free electrons at the atom NEZ to an active water and let it to be a partial hydroxide, which attacks the carbon atom of the carbonyl group of the substrate. Both His H35 and Arg L96 can form hydrogen bonds and stabilize the Anoinc tetrahedral intermediate formed during turnover. This mechanism emphasizes that an active water bridge may be formed during hydrolysis process.
基金Supported by the NSFC(21576206)the Program for Changjiang Scholars and Innovative Research Team in University(IRT_15R46)
文摘The solubilities of trimethylolethane in butanol,methyl acetate,ethyl acetate as well as in mixed solvents of(methanol+ethyl acetate) and(ethanol+ethyl acetate) were measured with the gravimetric method in the temperature range from 283.15 K to 318.15 K under atmosphere pressure.The experiment results showed that the solubility of trimethylolethane increased with the temperature,or along with the concentration of methanol or ethanol in the solvents of(methanol+ethyl acetate) and(ethanol + ethyl acetate).In addition,the experiment values were correlated by the van't Hoff equation,Modi fied Apelblat Equation,λh Equation,CNIBS/R-K equation and Jouyban–Acree Model.The Modi fied Apelblat Equation provided the best fitting results of the solubility data of TME in the pure solvents while the CNIBS/R-K model showed the best estimation of the solubility in the binary solvent mixtures.Furthermore,the density functional theory(DFT) calculations showed that solubility in different solvents related to the strength of the interaction between the trimethylolethane and the solvent molecules.Finally,the standard molar enthalpy and molar entropy of trimethylolethane during the dissolving process was also calculated by Modi fied Apelblat equation in this work.
基金Key Foundation of Shannxi Province,China (No.04JK181)China Textile Industry Association(No.2007049)
文摘A series of segmented polyether-polyester polyurethane with amorphous hydrophilic soft segment domains were prepared from 4,4'- diphenylmethane diisocyanate (MDI), polybutylene adipate (Glycol) 2000 (PBA2000), and polyethylene glycol 1000 (PEG1000), with 1,4-butanediol (BDO) as the chain extender. Furthermore, several representative properties of the polyurethanes, such as moisture permeability, water resistance, hydrophilic property, and phase inversion temperature, were investigated. The studies show that the structure and concentration of soft segment have a remarkable effect on the main application properties of polyurethane. On the contrary, the functional properties of the polyurethane are almost not affected by its hard segment.
基金Funded by the Natural Science Foundation of China (No. 20775096)
文摘We proposed a novel method of fabricating polydimethylsiloxane (PDMS) microfluidic chip polymer master molds in this paper. The method mainly includes two steps. First, a stainless steel slice was laser etched to form a metal model. Then, the organic solution of poly(methyl methacrylate) (PMMA) was casted onto the metal model to fabricate the PMMA master which subsequently would be used to fabricate PDMS chips. We systematically researched different laser parameters influencing the surface status of microchannels and obtained optimized etching parameters. We investigated and optimized the organic solution composition of PMMA while casting chip masters, and developed a method to form fine polymer masters using two different viscosity solutions to cast the model in turn, and studied the repeatable replication. Then, we investigated physical performance of this chip and evaluated the practicability by analyzing Rhodamine B. Compared with present methods, the proposed method does not need photolithography on photoresistant and chemical etching. The entire fabricating progress is simple, fast, low-cost and can be controlled easily. Only several minutes are required to make a metal model, 3 hours for a PMMA master, and one day for PDMS chips.
文摘Flexible photodetectors have become a focus of current researches because they may offer some unique applications in various new areas that require flexible, lightweight, and mechanical shock-resistive sensing elements. In this work, we designed flexible organic-inorganic hybrid photodetectors on various flexible substrates, including polyethylene terephthalate (PET), common Sellotape and polydimethylsiloxane (PDMS), with n-type phenyl-C61-butyric acid methyl ester (PCBM) and p-type pearl-like GaP nanowires (NWs) as the active materials. The as-fabricated hybrid devices exhibited an optimized performance superior to the device made of pristine GaP NWs, with a fast response time (43 ms) and high on/off ratio (-170). Under different bending conditions, the flexible hybrid photodetectors demonstrated excellent flexibility and electrical stability, which make them very promising for further large-scale, high sensitivity and high speed photodetector applications.
基金supported by grants from the Ministry of Science and Technology of China (2012CB721005, 2012AA02A706, 2011ZX08009-001, 2012AA022107)the National Natural Science Foundation of China (31070070, 31121064)+1 种基金Ministry of Education of China (20110073110048)the SJTU-UM Collaborative Program
文摘The highly potent antitumor agent ansamitocin P3 is a macrolactam isolated from Actinosynnema pretiosum ATCC 31565. A 120-kb DNA fragment was previously identified as the ansamitocin biosynthetic gene cluster, and contains genes for polyketide assembly, precursor synthesis, post-polyketide synthesis modification, and regulation. Within the biosynthetic gene cluster, asm8 encodes an 1117-amino-acid protein with a high degree of similarity to the large ATP-binding LuxR family-type regulators. In the current study, we determined that inactivation of asm8 by gene replacement in ATCC 31565 resulted in the complete loss of ansamitocin production, and that complementation with a cloned asm8 gene restored ansamitocin biosynthesis. Interestingly, the disruption of asm8 decreased the transcription of genes responsible for 3-amino-5-hydroxybenzoate (AHBA) formation, the starter unit required for ansamitocin biosynthesis. Subsequently, feeding of exogenous AHBA to the asm8 mutant restored ansamitocin biosynthesis, which showed that Asm8 is a specific positive regulator in AHBA biosynthesis. In addition, investigation of asm8 homologs identified two new ansamitocin producers, and inactivation of the asm8 homolog in A. pretiosum ATCC 31280 abolished ansamitocin production in this strain. Characterization of the positive regulator Asm8 and discovery of the two new ansamitocin producers paves the way for further improving production of this important antitumor agent.
基金supported by the Italian Ministry of Education,University and Research (MIUR)
文摘The aerothermal performance of a trailing edge (TE) internal cooling system of a high pressure gas turbine blade was evaluated under stationary and rotating conditions. The investigated geometry consists of a 30:1 scaled model reproducing a typical wedge shaped discharge duct with one row of enlarged pedestals. The airflow pattern inside the device simulates a highly loaded rotor blade cooling scheme with a 90 [deg] turning flow from the radial hub inlet to the tangential TE outlet. Two different tip configurations were tested, the first one with a completely closed section, the second one with a 5 holes outlet surfaces discharging at ambient pressure. In order to assess rotation effects, a rotating test rig, composed of a rotating ann holding both the PMMA TE model and the instru mentation, was purposely developed and manufactured. A thin Inconel heating foil and wide band Thermochromic Liquid Crystals are used to perform steady state heat transfer measurements on the blade pres sure side. A rotary joint ensures the pneumatic connection between the blower and the rotating apparatus; more over several slip rings are used for both instrumentation power supply and thermocouple connection. A parallel CFD analysis involving steadystate RANS modeling was conducted to allow an insight of the flow field inside the redirecting channel and the interpedestal ducts to better interpret the developing vortical structures. LowReynolds grid clustering permits to integrate up to the wall both the momentum and the thermal boundary layer. Calculations were performed by means of an inhouse developed pressure based solver exploiting the kco SST turbulence model implemented in the framework of the opensource finite volume discretization toolbox OpenFOAM~. Analyzed flow conditions correspond to Reynolds number of 20000 in the hub inlet section and angular speed varies to obtain rotation numbers in the range from 0 to 0.3. The orientation of the rotation axis is orthogonal to the heated surface as to resemble a 90 [deg] blade metal angle. Results are reported in terms of de tailed heat transfer coefficient 2D maps on the suction side surface as well as spanwise profiles inside the pedestal ducts.