AIM: To evaluate the effects of betaine on the ethanolinduced secretion of IGF-I and IGFBP-1 using radioimrnunoassay and Western blotting, respectively, in primary cultured rat hepatocytes. METHODS: Hepatocytes isol...AIM: To evaluate the effects of betaine on the ethanolinduced secretion of IGF-I and IGFBP-1 using radioimrnunoassay and Western blotting, respectively, in primary cultured rat hepatocytes. METHODS: Hepatocytes isolated from male SpragueDawley rats were incubated with various concentrations of ethanol and PD98059 procedures. The hepatocytes were also treated with different doses of betaine (10^-5, 10^-4, and 10^-3 mol/L). We measured IGF-I and IGFBP-1 using radioimmunoassay and Western blotting, respectively. RESULTS: The ethanol-induced inhibition of IGF-I secretion was attenuated by betaine in a concentration-dependent manner in primary cultured rat hepatocytes. At 10^-3 mol/L, betaine significantly increased IGF-I secretion but decreased IGFBP-1 secretion. In addition, p42/44 rnitogen-activated protein kinase (MAPK) activity was accelerated significantly from 10 min to 5 h after treatment with 10^-3 mol/L betaine. Furthermore, the changes in IGF-1 and IGFBP-1 secretion resulting from the increased betaine-induced p42/44 MAPK activity in primary cultured rat hepatocytes was blocked by treatment with the MAPK inhibitor PD98059. Betaine treatment blocked the ethanol-induced inhibition of IGF-I secretion and p42/44 MAPK activity, and the ethanol-induced increase in IGFBP-1 secretion.CONCLUSION: Betaine modulates the secretion of IGF-I and IGFBP-1 via the activation of p42144 MAPK in primary cultured rat hepatocytes. Betaine also alters the MAPK activations induced by ethanol.展开更多
Cation-exchange chromatography was selected to extract and separate betaines from marine algae. On the basis of the special chemical characteristics of the betaines and their analogues, Dragendorff’s reagent (KBiI 4)...Cation-exchange chromatography was selected to extract and separate betaines from marine algae. On the basis of the special chemical characteristics of the betaines and their analogues, Dragendorff’s reagent (KBiI 4) was used to test the existence of betaines and their analogues in marine algae. The total content of betaines from seven species was obtained by using the Reinkeate salt precipitation method. The results showed that the content of betaines in two species of Chlorophyta and two species of Rhodophyta were relatively high,and that the content of betaines in Enteromopha prolifera could even reach to 0.9%. The content in the three species of Phaeophyta was relatively low.展开更多
文摘AIM: To evaluate the effects of betaine on the ethanolinduced secretion of IGF-I and IGFBP-1 using radioimrnunoassay and Western blotting, respectively, in primary cultured rat hepatocytes. METHODS: Hepatocytes isolated from male SpragueDawley rats were incubated with various concentrations of ethanol and PD98059 procedures. The hepatocytes were also treated with different doses of betaine (10^-5, 10^-4, and 10^-3 mol/L). We measured IGF-I and IGFBP-1 using radioimmunoassay and Western blotting, respectively. RESULTS: The ethanol-induced inhibition of IGF-I secretion was attenuated by betaine in a concentration-dependent manner in primary cultured rat hepatocytes. At 10^-3 mol/L, betaine significantly increased IGF-I secretion but decreased IGFBP-1 secretion. In addition, p42/44 rnitogen-activated protein kinase (MAPK) activity was accelerated significantly from 10 min to 5 h after treatment with 10^-3 mol/L betaine. Furthermore, the changes in IGF-1 and IGFBP-1 secretion resulting from the increased betaine-induced p42/44 MAPK activity in primary cultured rat hepatocytes was blocked by treatment with the MAPK inhibitor PD98059. Betaine treatment blocked the ethanol-induced inhibition of IGF-I secretion and p42/44 MAPK activity, and the ethanol-induced increase in IGFBP-1 secretion.CONCLUSION: Betaine modulates the secretion of IGF-I and IGFBP-1 via the activation of p42144 MAPK in primary cultured rat hepatocytes. Betaine also alters the MAPK activations induced by ethanol.
文摘Cation-exchange chromatography was selected to extract and separate betaines from marine algae. On the basis of the special chemical characteristics of the betaines and their analogues, Dragendorff’s reagent (KBiI 4) was used to test the existence of betaines and their analogues in marine algae. The total content of betaines from seven species was obtained by using the Reinkeate salt precipitation method. The results showed that the content of betaines in two species of Chlorophyta and two species of Rhodophyta were relatively high,and that the content of betaines in Enteromopha prolifera could even reach to 0.9%. The content in the three species of Phaeophyta was relatively low.