The silicon-containing poly (amic acid)s were synthesized from bis (3, 4-dicarboxyphenyl) dimethylsilane dianhydride (SIDA), pyromellitic dianhydride (PMDA) and 4,4′-oxydianiline (4,4'-ODA) in N, N-dimethylacetam...The silicon-containing poly (amic acid)s were synthesized from bis (3, 4-dicarboxyphenyl) dimethylsilane dianhydride (SIDA), pyromellitic dianhydride (PMDA) and 4,4′-oxydianiline (4,4'-ODA) in N, N-dimethylacetamide (DMAc). The poly (amic acid) films were obtained by solution-cast method from DMAc solutions and thermally converted into transparent, flexible and tough polyimide films. The wide-angle X-ray diffraction diagrams revealed that all the polyimides possessed amorphous character, and the regulation of those polyimides were decreased with the increase of the molar ratio of SIDA to PMDA. Differential scanning calorimeter measurements showed that the introduction of SIDA to polyimide backbone would make glass transition temperature shift to lower temperature. Thermogravimetric analyses indicated that the silicon-containing polyimides lowered decomposition temperature as compared with PMDA/4, 4′-ODA polyimides. However, UV-visible transmission and reflection spectra showed that the optical transparency of silicon-containing polyimide thin films was superior to that of PMDA/4, 4'-ODA polyimide thin films.展开更多
文摘The silicon-containing poly (amic acid)s were synthesized from bis (3, 4-dicarboxyphenyl) dimethylsilane dianhydride (SIDA), pyromellitic dianhydride (PMDA) and 4,4′-oxydianiline (4,4'-ODA) in N, N-dimethylacetamide (DMAc). The poly (amic acid) films were obtained by solution-cast method from DMAc solutions and thermally converted into transparent, flexible and tough polyimide films. The wide-angle X-ray diffraction diagrams revealed that all the polyimides possessed amorphous character, and the regulation of those polyimides were decreased with the increase of the molar ratio of SIDA to PMDA. Differential scanning calorimeter measurements showed that the introduction of SIDA to polyimide backbone would make glass transition temperature shift to lower temperature. Thermogravimetric analyses indicated that the silicon-containing polyimides lowered decomposition temperature as compared with PMDA/4, 4′-ODA polyimides. However, UV-visible transmission and reflection spectra showed that the optical transparency of silicon-containing polyimide thin films was superior to that of PMDA/4, 4'-ODA polyimide thin films.