假密环菌是一种果树腐病菌,具有较强的分解代谢纤维素的能力。根据已克隆出的阿拉伯糖苷酶基因序列(Accession Number AJ620046)设计引物从假密环菌的mRNA中克隆出阿拉伯糖苷酶的ORF片段,构建重组质粒pPIC9-AF,与组氨酸标签融合,电转化...假密环菌是一种果树腐病菌,具有较强的分解代谢纤维素的能力。根据已克隆出的阿拉伯糖苷酶基因序列(Accession Number AJ620046)设计引物从假密环菌的mRNA中克隆出阿拉伯糖苷酶的ORF片段,构建重组质粒pPIC9-AF,与组氨酸标签融合,电转化毕赤酵母菌GS115并进行诱导表达。所得到的重组阿拉伯糖苷酶在30-35℃时有较高的酶活,最适反应活性pH值在 6.0~8.0之间,而在pH4.0~8.0范围内酶活基本保持在80%以上,比大多已报道的阿拉伯糖苷酶最适pH范围宽。对于高效表达重组阿拉伯糖苷酶以及对其进一步的酶学性质研究提供了良好的基础。展开更多
[Objective] The research aimed to study the secreted expression of S-edenosyl-L-methionine synthetase (SAMS) in Pichia pastoris. Method ] The gene coding SAMS, from the genomic DNA of Saccharomyces cerevisiae, was ...[Objective] The research aimed to study the secreted expression of S-edenosyl-L-methionine synthetase (SAMS) in Pichia pastoris. Method ] The gene coding SAMS, from the genomic DNA of Saccharomyces cerevisiae, was amplified by PCR and inserted into the secreted expression vector pPIC9K to get recombinant plasmid. The recombinant plasmid pPIC9K-sarr~ was integrated into Pichia pastoris GSl15 genome by electroporation and induced by methanol. The activity of the recombinant enzyme was measured using high-pedormance liquid chroma- tography (HPLC) by determining the production of S-adenosy-L-methionine (SAM) with the enzyme secreted. [ ResultJ The molecular weight of the expression protein identified by SDS-PAGE was about 50 kD, being larger than the theoretical molecular mass of SAMS, which might be due to the glycosytation in the process of secretion. Methanol-induction as well as preliminary purification could enhance the enzyme activity, espe- cially the latter, after which the specific activity of SAMS was improved to 61.48 U/rng. [Conclusion] SAMS with biological activity was secreted successfully in Pichia pastoris GSl15 for the first time. And it is the start for the genetic engineering strains to open up prospects for industrial production.展开更多
文摘假密环菌是一种果树腐病菌,具有较强的分解代谢纤维素的能力。根据已克隆出的阿拉伯糖苷酶基因序列(Accession Number AJ620046)设计引物从假密环菌的mRNA中克隆出阿拉伯糖苷酶的ORF片段,构建重组质粒pPIC9-AF,与组氨酸标签融合,电转化毕赤酵母菌GS115并进行诱导表达。所得到的重组阿拉伯糖苷酶在30-35℃时有较高的酶活,最适反应活性pH值在 6.0~8.0之间,而在pH4.0~8.0范围内酶活基本保持在80%以上,比大多已报道的阿拉伯糖苷酶最适pH范围宽。对于高效表达重组阿拉伯糖苷酶以及对其进一步的酶学性质研究提供了良好的基础。
文摘[Objective] The research aimed to study the secreted expression of S-edenosyl-L-methionine synthetase (SAMS) in Pichia pastoris. Method ] The gene coding SAMS, from the genomic DNA of Saccharomyces cerevisiae, was amplified by PCR and inserted into the secreted expression vector pPIC9K to get recombinant plasmid. The recombinant plasmid pPIC9K-sarr~ was integrated into Pichia pastoris GSl15 genome by electroporation and induced by methanol. The activity of the recombinant enzyme was measured using high-pedormance liquid chroma- tography (HPLC) by determining the production of S-adenosy-L-methionine (SAM) with the enzyme secreted. [ ResultJ The molecular weight of the expression protein identified by SDS-PAGE was about 50 kD, being larger than the theoretical molecular mass of SAMS, which might be due to the glycosytation in the process of secretion. Methanol-induction as well as preliminary purification could enhance the enzyme activity, espe- cially the latter, after which the specific activity of SAMS was improved to 61.48 U/rng. [Conclusion] SAMS with biological activity was secreted successfully in Pichia pastoris GSl15 for the first time. And it is the start for the genetic engineering strains to open up prospects for industrial production.