Biologically produced surfactants (SACs) can mobilize and solubilize non-aqueous phase liquids (NAPL) adsorbed onto soil constituents. The interest in microbial surfactants has increased during recent years due to...Biologically produced surfactants (SACs) can mobilize and solubilize non-aqueous phase liquids (NAPL) adsorbed onto soil constituents. The interest in microbial surfactants has increased during recent years due to their lower toxicity, higher biodegradability, selectivity and specific activity under extreme conditions than synthetic SACs. Main output of the project represents preparation of this yeast biosurfactant intended for washing of matrices contaminated by NAPL. The influence of cultivation media composition on biosurfactant production was studied and basic properties (critical micelle concentration (CMC), minimum surface tension) of isolated biosurfactants were compared with properties of synthetic surfactant with surface tension measurement. The interracial tension of the systems containing aqueous solutions of different concentrations and non-polar substances was measured with petroleum compounds (kerosene Jet A-l), aromatic and aliphatic hydrocarbons (represented by toluene and hexane). The solution of biosurfactant Yarrowia lipolytica (YAR) in the concentration range of 0-500 mg/L reduced interracial tension by 80% in all representative systems with model contaminants; biosurfactant Candida bombicola (CAN) was less efficient. Solubilization properties were proved with toluene and hexachlorocyclohexane (HCH) isomers alpha and gamma, and effective concentration of biosurfactants was determined as 100 mg/L for toluene and HCH. SACs produced by lipophilic yeast with non-toxic and non-pathogenic status (Yarrowia lipolytica, Candida sp., etc.) seem to be very promising. The results obtained will be used for the application of biosurfactants in the clean-up technologies as agents for the mobilization of non-polar contaminants as well as for stimulation of bioremediation processes.展开更多
文摘Biologically produced surfactants (SACs) can mobilize and solubilize non-aqueous phase liquids (NAPL) adsorbed onto soil constituents. The interest in microbial surfactants has increased during recent years due to their lower toxicity, higher biodegradability, selectivity and specific activity under extreme conditions than synthetic SACs. Main output of the project represents preparation of this yeast biosurfactant intended for washing of matrices contaminated by NAPL. The influence of cultivation media composition on biosurfactant production was studied and basic properties (critical micelle concentration (CMC), minimum surface tension) of isolated biosurfactants were compared with properties of synthetic surfactant with surface tension measurement. The interracial tension of the systems containing aqueous solutions of different concentrations and non-polar substances was measured with petroleum compounds (kerosene Jet A-l), aromatic and aliphatic hydrocarbons (represented by toluene and hexane). The solution of biosurfactant Yarrowia lipolytica (YAR) in the concentration range of 0-500 mg/L reduced interracial tension by 80% in all representative systems with model contaminants; biosurfactant Candida bombicola (CAN) was less efficient. Solubilization properties were proved with toluene and hexachlorocyclohexane (HCH) isomers alpha and gamma, and effective concentration of biosurfactants was determined as 100 mg/L for toluene and HCH. SACs produced by lipophilic yeast with non-toxic and non-pathogenic status (Yarrowia lipolytica, Candida sp., etc.) seem to be very promising. The results obtained will be used for the application of biosurfactants in the clean-up technologies as agents for the mobilization of non-polar contaminants as well as for stimulation of bioremediation processes.