The most striking morphological feature of eukaryotic cells is the presence of various membrane-enclosed compartments. These compartments, including organelles and transient transport intermediates, are not static. Ra...The most striking morphological feature of eukaryotic cells is the presence of various membrane-enclosed compartments. These compartments, including organelles and transient transport intermediates, are not static. Rather, dynamic exchange of proteins and membrane is needed to maintain cellular homeostasis. One of the most dramatic examples of membrane mobilization is seen during the process ofmacroautophagy. Macroautophagy is the primary cellular pathway for degradation of long-lived proteins and organelles. In response to environmental cues, such as starvation or other types of stress, the cell produces a unique membrane structure, the phagophore. The phagophore sequesters cytoplasm as it forms a double-membrane cytosolic vesicle, an autophagosome. Upon completion, the autophagosome fuses with a lysosome or a vacuole in yeast, which delivers hydrolases that break down the inner autophagosome membrane along with its cargo, and the resulting macromolecules are released back into the cytosol for reuse. Autophagy is therefore a recycling process, allowing cells to survive periods of nutrient limitation; however, it has a wider physiological role, participating in development and aging, and also in protection against pathogen invasion, cancer and certain neurodegenerative diseases. In many cases, the role ofautophagy is identified through studies of an autophagy-related protein, Atg6/Beclin 1. This protein is part of a lipid kinase complex, and recent studies suggest that it plays a central role in coordinating the cytoprotective function ofautophagy and in opposing the cellular death process of apoptosis. Here, we summarize our current knowledge ofAtg6/Beclin 1 in different model organisms and its unique function in the cell.展开更多
AIM: To identify the pre-X region in hepatitis B virus (HBV)genome and to study the relationship between the genotype and the pre-X region. To investigate the biological function of whole-X (pre-X plus X) protein, we ...AIM: To identify the pre-X region in hepatitis B virus (HBV)genome and to study the relationship between the genotype and the pre-X region. To investigate the biological function of whole-X (pre-X plus X) protein, we performed yeast two-hybrid to screen proteins in liver interacting with whole-X protein.METHODS: The pre-X region of HBV was amplified by polymerase chain reaction (PCR) method, and was cloned to pGEM Teasy vector. After the target region was sequenced, Vector 8.0 software was used to analyze the sequences. The whole-X bait plasmid was constructed by using yeast two-hybrid system 3. Yeast strain AH109 was transformed. After expression of the whole-X protein in AH109 yeast strains was proved, yeast two-hybrid screening was performed by mating AH109 with Y187 containing liver cDNA library plasmid. The mated yeast was plated on quadruple dropout medium and assayed for α-gal activity. The interaction between whole-X protein and the protein obtained from positive colonies was further confirmed by repeating yeast two-hybrid. After extracting and sequencing of plasmid from blue colonies, we carried out analysis by bioinformatics. RESULTS: After sequencing, 27 of 45 clones (60%) were found encoding the pre-X peptide. Eighteen of twenty-seven clones (66.7%) of pre-X coding sequences were found from genotype C. Five positive colonies that interacted with whole-X protein were obtained and sequenced; namely, fetuin B, UDP glycosyltransferase 1 family-polypeptide A9, mannose-P-dolichol utilization defect 1, fibrinogen-B beta polypeptide, transmembrane 4 superfamily member 4CD81 (TM4SF4).CONCLUSION: The pre-X gene exists in HBV genome.Genes of proteins interacting with whole-X protein in hepatocytes were successfully cloned. These results brought some new clues for studying the biological functions of whole-X protein.展开更多
The terrestrial yeasts have been receiving great attention in science and industry for over one hundred years because they can produce many kinds of bioactive substances. However, little is known about the bioactive s...The terrestrial yeasts have been receiving great attention in science and industry for over one hundred years because they can produce many kinds of bioactive substances. However, little is known about the bioactive substances of marine yeasts. In recent years, it has been found that marine yeasts have wide applications in mariculture and other fields. Therefore,marine yeasts, the bioactive substances from them and the applications of marine yeasts themselves and the bioactive substances they produced are reviewed in this paper.展开更多
Protoplasts from Candida tropicalis and Candida lipolytica were fused under an optimized electrofusion (electrical pulse strength 6 kV/cm, pulse duration time 40μs and pulse times 5) and then regenerated on YEPD me...Protoplasts from Candida tropicalis and Candida lipolytica were fused under an optimized electrofusion (electrical pulse strength 6 kV/cm, pulse duration time 40μs and pulse times 5) and then regenerated on YEPD media for achieving new genotypes with higher chromium loading capacity. A target fusant RHJ-004 was screened out by its chromium resistance and chromium-sorbing capacity tests for further research. The comparative study of applicability shows that the fusant has better performance than its parent strains in respect of solution pH, biomass concentration and chromium loading capacity. Especially for treating low concentration Cr(VI) (〈20 mg/L), above 80% chromium is sequestered from the aqueous phase at pH 1-9. Atomic force microscopy (AFM) visualizes the distribution of chromium on the binding sites of the cells, suggesting that the altered surface structure and intracellular constitutes of the fusant associate with its increased biosorption capacity. The rapid biosorption processes of chromium foUow the Langmuir model well.展开更多
AIM: To investigate the biological function of HBcAg in pathogenesis of HBV replication in peripheral blood mononuclear cells (PBMCs).METHODS: HBcAg region was amplified by polymerase chain reaction (PCR) and HB...AIM: To investigate the biological function of HBcAg in pathogenesis of HBV replication in peripheral blood mononuclear cells (PBMCs).METHODS: HBcAg region was amplified by polymerase chain reaction (PCR) and HBV HBcAg bait plasmid pGBKT7-HBcAg was constructed by routine molecular biological methods. Then the recombinant plasmid DNA was transformed into yeast AH109. After the HBV core protein was expressed in AH109 yeast strains (Western blot analysis), yeast-two hybrid screening was performed by mating AH109 with Y187 containing leukocyte cDNA library plasmid. Diploid yeast cells were plated on synthetic dropout nutrient medium (SD/-Trp-Leu-His- Ade) (QDO) and synthetic dropout nutrient medium (SD/-Trp-Leu-His-Ade) (TDO). The second screening was performed with the LacZ report gene ( yeast cells were grown in QDO medium containing X-a-gal). The interaction between HBV core protein and the protein obtained from positive colonies was further confirmed by repeating yeast-two hybrid. After plasmid DNA was extracted from blue colonies and sequenced, the results were analyzed by bioinformatic methods.RESULTS: Eighteen colonies were obtained and sequenced, including hypermethylated in cancer 2 (3 colones), eukaryotic translation elongation factor 2 (2 colones), acetyl-coenzyme A synthetase 3 (1 colone), DNA polymerase gamma (1 colone), putative translation initiation factor (1 colone), chemokine (C-C motif) receptor 5 (1 colone), mitochondrial ribosomal protein L41 (1 colone), kyot binding protein genes (1 colone), RanBPM (1 colone), HBeAg-binding protein 3 (1 colone), programmed cell death 2 (1 colone). Four new genes with unknown function were identified.CONCLUSION: Successful cloning of genes of HBV core protein interacting proteins in leukocytes may provide some new clues for studying the biological functions of HBV core protein.展开更多
Interactions are the essence of all biomolecules because they cannot fulfill their roles without interacting with other molecules. Hence, mapping the interactions of biomolecules can be useful for understanding their ...Interactions are the essence of all biomolecules because they cannot fulfill their roles without interacting with other molecules. Hence, mapping the interactions of biomolecules can be useful for understanding their roles and functions. Furthermore, the development of molecular based systems biology requires an understanding of the biomolecular interactions. In recent years, the mapping of protein-protein interactions in different species has been reported, but few reports have focused on the large-scale mapping of protein-protein interactions in human. Here, we review the developments in protein interaction mapping and we discuss issues and strategies for the mapping of the human protein interactome.展开更多
Effect of low-pressure carbonation (LPC) on heat inactivation of Saccharomyces cerevisiae was investigated. The cell suspension was carbonated at 1 MPa and 4℃ for 15 min and subsequently heated from 51 to 61 ℃ and...Effect of low-pressure carbonation (LPC) on heat inactivation of Saccharomyces cerevisiae was investigated. The cell suspension was carbonated at 1 MPa and 4℃ for 15 min and subsequently heated from 51 to 61 ℃ and 5 s to 5 min (heating with LPC). As a control experiment, cell suspension was heat-treated under atmospheric pressure without LPC (heating). The inactivation ratio of heating at 53℃ and 55℃ for l rain with LPC was approximately 1 log order higher than heating alone. Extending heating time to 5 min did not widen the difference in the inactivation ratio between heating with LPC and heating alone at both heating temperatures. At 57℃, the difference in inactivation ratio increased from 1 to 2.5 log order with extending treatment time from 5 to 15 s. The results suggested that the enhanced inactivation effect by LPC was obtained at the higher temperature with short time treatment than the lower temperature with longer time treatment. Under fluorescence microscope observation of LPC-treated cell stained with LysoSensor probe, it seemed that LPC was hardly able to acidify the cytoplasm ofS. cerevisiae. It is considered that the ability orS. cerevisiae ceils to keep their cytoplasmic pH during LPC resulted in the inferior increase in heat inactivation ratio by LPC as compared with bacteria in the previous studies.展开更多
Using lignite samples, selected from Zhaotong basin, Yunnan province, China, as the parent source, simulating experiments of lignite biogas were conducted with 0.1% methanol, 5 mg/L yeast extract and 0.2 mol/L sodium ...Using lignite samples, selected from Zhaotong basin, Yunnan province, China, as the parent source, simulating experiments of lignite biogas were conducted with 0.1% methanol, 5 mg/L yeast extract and 0.2 mol/L sodium acetate solutions as the exogenous substance respectively. Variation characteristics of gas production, gas composition, VFA content and activity of coenzyme 1:42o in the simulated process were analyzed to discuss the influence of different substrates on lignite biogas generation. The results show that 0.1% methanol and 5 mg/L yeast extract solutions increase VFA contents in the biogas generation system (p 〈 0.05) and inhibit coenzyme F420 and methanogen activities significantly, so they decrease both gas amounts (p 〈 0.05) and CH4 contents (p 〈 0.05). 0.2 mol/L sodium acetate solution activates coenzyme F42o and methanogen activities and improves the efficiency of enzymatic reaction, so the gas quantity (p 〈 0.05) and the CH4 content (p 〈 0.01) increase significantly. Therefore, sodium acetate can be one kind of good exogenous substance for the generation of lignite biogenic gas.展开更多
Serratia marcescens ECUI010, as an extracellular lipase and a significant catalyst, which had been widely employed to catalyze various chemical reactions such as non-specific, stereo-specific hydrolysis and esterifica...Serratia marcescens ECUI010, as an extracellular lipase and a significant catalyst, which had been widely employed to catalyze various chemical reactions such as non-specific, stereo-specific hydrolysis and esterification for industrial biocatalytic applications, was previously mostly expressed intracellularly as inclusion bodies in Escherichia coli. Denaturation and renaturation of inclusion bodies had a significant influence on the lipase activity. Thereupon, our present work described the secretion expression of gene encoding of this lipase in Pichia pastoris GS 115 and characterization of the recombinant enzyme. Firstly, the obtained lipA gene fragment was introduced into P. pastoris expression vector pPIC9K, the lipA gene without its signal sequence were cloned downstream to the alpha-mating factor signal and expressed in P. pastoris GS115 under the control of AOXI promoter, and the recombinant plasmid pPIC9K-lipA was transformed into P. pastoris strain GS115 by electroporation, and this recombinant P. pastoris were identified by PCR. Then lipase activity was detected on BMMY-tributyrin and olive oil agar plates containing Rhodamine B. Transformants with lipase activity by screening were induced 6 days by methanol, one band of 77 kDa protein could be observed by 10% SDS-PAGE. p-nitrophenyl esters of fatty acids were used as the substrates in an automated activity assay of liquid culture media. The pH and temperature optimum of lipase were pH 8.5 and 40℃ respectively. The stability and effects of metal ions and other reagents were also determined. However, the recombinant fusion intended for secretion was efficiently secreted in a percentage of close to 90% and remained stable even in rich medium at high cell density cultures, yielding values of over 4 U of lipase activity per milliliter of culture media supernatant.展开更多
The reversed micelles were formed with cationic cetyltrimethylammonium bromide (CTAB) as surfactant and n-hexanol as cosolvent in the CTAB (50mmol.L-1)/hexanol (15% by volume)/hexane system. Cibacron Blue 3GA (CB) as ...The reversed micelles were formed with cationic cetyltrimethylammonium bromide (CTAB) as surfactant and n-hexanol as cosolvent in the CTAB (50mmol.L-1)/hexanol (15% by volume)/hexane system. Cibacron Blue 3GA (CB) as an affinity ligand in the aqueous phase was directly introduced to the reversed micelles with electrostatic interaction between anionic CB and cationic surfactant. High molecular weight (Mr) protein, yeast alcohol dehydrogenase (YADH, Mr = 141000) from baker's yeast, has been purified using the affinity reversed micelles by the phase transfer method. Various parameters, such as CB concentration, pH and ionic strength, on YADH forward and backward transfer were studied. YADH can be transferred into and out from the reversed micelles under mild conditions (only by regulation of solution pH and salt concentration) with the successful recovery of most YADH activity. Both forward and backward extractions occurred when the aqueous phase pH>pI with electrostatic attraction between YADH and CTAB. The recovery of YADH activity and purification factor have been improved with addition of a small amount of affinity CB. The recovery of YADH activity obtained was ~99% and the purification factor was about 4.0-fold after one cycle of full forward and backward extraction. The low ionic strength in the initial aqueous phase might be responsible for the YADH transfer into the reversed micellar phase.展开更多
AIM: To investigate the biological function of F protein by yeast two-hybrid system. METHODS: We constructed F protein bait plasmid by cloning the gene of F protein into pGBKT7, then recombinant plasmid DNA was tran...AIM: To investigate the biological function of F protein by yeast two-hybrid system. METHODS: We constructed F protein bait plasmid by cloning the gene of F protein into pGBKT7, then recombinant plasmid DNA was transformed into yeast AH109 (a type). The transformed yeast AH109 was mated with yeast Y187 (α type) containing liver cDNA library plasmid in 2×YPDA medium. Diploid yeast was plated on synthetic dropout nutrient medium (SD/-Trp-Leu-HisAde) containing X-α-gal for selection and screening. After extracting and sequencing plasmids from positive (blue) colonies, we underwent sequence analysis by bioinformatics. RESULTS: Thirty-six colonies were selected and sequenced. Among them, 11 colonies were zymogen granule protein, 5 colonies were zinc finger protein, 4 colonies were zinc-α-2-glycoprotein, 1 colony was sialyltransferase, 1 colony was complement control protein factor I, 1 colony was vitronectin, and 2 colonies were new genes with unknown function. CONCLUSION: The yeast two-hybrid system is an effective method for identifying hepatocyte proteins interacting with F protein of hepatitis C virus. F protein may bind to different proteins. 2005 The WJG Press and Elsevier Inc. All rights reserved展开更多
To study recycled trashes from shrimps and crabs in the sea through chitinase secreted by microorganisms,the chitinase gene chit2 was cloned and sequenced from Beauveria bassiana by the polymerase chain reaction(PCR),...To study recycled trashes from shrimps and crabs in the sea through chitinase secreted by microorganisms,the chitinase gene chit2 was cloned and sequenced from Beauveria bassiana by the polymerase chain reaction(PCR),and was ligated into the yeast expression vector pYES2.The expression vector plasmid was transformed into Saccharomyces cerevisiae H158.Gene expression took place upon induction with 2% galactose.The measurement of enzyme activity shows that the expression production can be expressed in active forms and secreted to the medium.The enzyme activity approaches the peak of 0.63 U/mL when the culture time is 36 h.展开更多
Forty eight individually fed Awassi male lambs were used in factorial experiment to investigate their responses to feeding concentrate diets containing three levels of dietary crude protein (CP), each was offered wi...Forty eight individually fed Awassi male lambs were used in factorial experiment to investigate their responses to feeding concentrate diets containing three levels of dietary crude protein (CP), each was offered without or with baker's yeast (SC) at rate of 0.5% (on dry matter (DM) basis). Concentrates were offered at rate of 3% of live body weight with free choice of barley straw. Results revealed that higher (P 〈 0.05) digestible dry matter (DDM) and digestible organic matter (DOM) intakes were achieved due to feeding medium level of CP and to the addition of SC. Addition of SC improved (P 〈 0.05) gain, lambs fed medium and high levels gained higher (P 〈 0.05) than those fed the low level of dietary CP. Feed conversion ratio (FCR) based on DM and organic matter (OM) intakes was not significantly affected by level of dietary CP or addition of yeast. Even though, less amount of N required per unit of gain was achieved with low and medium as compared to high levels. Higher DM, nitrogen free extract (NFE) and hemicellulose (P 〈 0.05), OM, CP, crude fiber (CF) and cellulose (P 〈 0.01) digestibilities were achieved in lambs fed the medium level of CP, whereas, no significant effect was observed on ether extract (EE), neutral detergent fiber (NDF) and acid detergent fiber (ADF) digestibilities. Results also revealed that digestibility of almost all nutrients was improved with different extent due to addition of SC. Effect of interaction between levels of dietary CP and addition of SC referred to the preferability of addition of SC with medium level of dietary protein.展开更多
Corn cobs are a promising lignocellulosic substrate for the production of biofuels like bioethanol via conventional yeast or biodiesel via oleaginous yeast. Pretreatment of the substrate is essential for further hydro...Corn cobs are a promising lignocellulosic substrate for the production of biofuels like bioethanol via conventional yeast or biodiesel via oleaginous yeast. Pretreatment of the substrate is essential for further hydrolysis and fermentation steps. This study focused on the steam explosion method as pretreatment. Therefore, different steam explosion severities were evaluated. The content of glucan, xylan and Klason lignin was examined. Xylan degraded with increasing severity from 412.7 g·kg-1 (untreated) to a minimum of 127.3 g-kg1 dry matter (190 ℃/30 min). Glucan concentrations increased from 315.1 g·kg1 (untreated) to a maximum of 371.6 g·kg-1 dry matter (200 ℃/20 min). For soluble lignin, an increase could be observed at rising severity, from 145.3 g·kg-l (untreated) to a maximum of 214.9 g·kg-1 dry matter (190 ℃/30 min). Furthermore, the mass recovery was calculated. At harsher pretreatment conditions, a significant mass loss was observed, estimated by the ash content in the recovered dry matter. The lowest recovery rate was observed for SF = 4.13 (190 ℃/30 min) with 68.39%. The produced inhibitors were evaluated.展开更多
Date palm (Phoenix dactylifera L.) fruit is an important component in arid and semi-arid diet regions of the world. The present study pointed out microbial investigating of date palm collected from National wholesal...Date palm (Phoenix dactylifera L.) fruit is an important component in arid and semi-arid diet regions of the world. The present study pointed out microbial investigating of date palm collected from National wholesale market in Fez city in the center north of Morocco. The results reveal that samples dates studied are contaminated by bacteria such as TAMF (total aerobic mesophilic flora), ASR (anaerobic sulfite reducing), yeasts and molds. The percentage of yeasts isolated is 50% for Saccharomyces cervisae, 10% for Zygosaccharomyces fermentati, 20% for Hansenula anomala, 10% for Lodderomyces elongisporus and 10% for Kluyveromyces fragilis. The frequency of molds distribution is 51% for Aspergillus niger, 33% for Penicillium notatum and 16% for Rhizopus oryzae. Newman and keuls grouping test shows that fungal germs distribution is equal for yeast and molds in all samples analyzed. In the opposite bacterial grouping test shows greet difference between groups of bacteria isolated from date's samples.展开更多
OBJECTIVES: Heparin-binding neurite-promoting factor (HBNF) is a heparin-binding protein primarily found in the brain, which can stimulate neurite outgrowth in vitro. We expressed recombinant human heparin-binding neu...OBJECTIVES: Heparin-binding neurite-promoting factor (HBNF) is a heparin-binding protein primarily found in the brain, which can stimulate neurite outgrowth in vitro. We expressed recombinant human heparin-binding neurite-promoting factor (hrHBNF) using a yeast system, and observed its activity in stimulating neurite outgrowth in vitro. METHODS: cDNA encoding mature human HBNF was amplified from total RNA isolated from an 18-week aborted human fetal brain by RT-PCR method. After amplification, the HBNF cDNA gene was cloned into pPIC9K, a shuttle expression vector for yeast system. The positive clone of expression vector bearing HBNF cDNA gene was obtained by screening. Verified recombinant vector was then used to transform Pichia strain GS115 by electroporation. His(+) transformants were selected on minimal dextrose medium (MD) plates which were histidine free. His(+) yeast recombinants with multi-copy inserts were screened in vivo by their resistance to G418. PCR analysis was used to confirm the integration of the HBNF cDNA gene into the Pichia genome. Secreted expression of hrHBNF protein in culture medium was obtained when the positive clone containing the HBNF cDNA gene was induced by methanol. The hrHBNF product purified by gel chromatography was added to cultured rat pheochromocytoma (PC12) cells to observe its ability to stimulate neurite outgrowth. RESULTS: In the recombinant expression vector, the insert was sequenced to show exactly the sequence encoding human HBNF according to Genbank data. The HBNF cDNA gene was cloned downstream to the alpha-factor, and its open reading frame was in frame with the alpha-factor signal sequence in pPIC9K. SDS-PAGE showed that the molecular weight of the induced expression product was about 18 kDa, consistent with that of human HBNF reported in the literature. The protein product did promote neurite outgrowth in cultured rat pheochromocytoma (PC12) cells. CONCLUSION: Recombinant human heparin-binding neurite-promoting factor can be expressed with a yeast system, and its product possesses the biological activity to promote neurite outgrowth.展开更多
文摘The most striking morphological feature of eukaryotic cells is the presence of various membrane-enclosed compartments. These compartments, including organelles and transient transport intermediates, are not static. Rather, dynamic exchange of proteins and membrane is needed to maintain cellular homeostasis. One of the most dramatic examples of membrane mobilization is seen during the process ofmacroautophagy. Macroautophagy is the primary cellular pathway for degradation of long-lived proteins and organelles. In response to environmental cues, such as starvation or other types of stress, the cell produces a unique membrane structure, the phagophore. The phagophore sequesters cytoplasm as it forms a double-membrane cytosolic vesicle, an autophagosome. Upon completion, the autophagosome fuses with a lysosome or a vacuole in yeast, which delivers hydrolases that break down the inner autophagosome membrane along with its cargo, and the resulting macromolecules are released back into the cytosol for reuse. Autophagy is therefore a recycling process, allowing cells to survive periods of nutrient limitation; however, it has a wider physiological role, participating in development and aging, and also in protection against pathogen invasion, cancer and certain neurodegenerative diseases. In many cases, the role ofautophagy is identified through studies of an autophagy-related protein, Atg6/Beclin 1. This protein is part of a lipid kinase complex, and recent studies suggest that it plays a central role in coordinating the cytoprotective function ofautophagy and in opposing the cellular death process of apoptosis. Here, we summarize our current knowledge ofAtg6/Beclin 1 in different model organisms and its unique function in the cell.
基金Supported by the grants from the National Natural Science Foundation, No. C03011402, No. C30070690the 9.5 Research and Technique Foundation of PLA, No. 98D063+1 种基金 the Launching Foundation for Student Studying Abroad of PLA, No. 98H038 the 10.5 Youth Research and Technique Foundation of PLA, No. 01Q138andNo. 01MB135
文摘AIM: To identify the pre-X region in hepatitis B virus (HBV)genome and to study the relationship between the genotype and the pre-X region. To investigate the biological function of whole-X (pre-X plus X) protein, we performed yeast two-hybrid to screen proteins in liver interacting with whole-X protein.METHODS: The pre-X region of HBV was amplified by polymerase chain reaction (PCR) method, and was cloned to pGEM Teasy vector. After the target region was sequenced, Vector 8.0 software was used to analyze the sequences. The whole-X bait plasmid was constructed by using yeast two-hybrid system 3. Yeast strain AH109 was transformed. After expression of the whole-X protein in AH109 yeast strains was proved, yeast two-hybrid screening was performed by mating AH109 with Y187 containing liver cDNA library plasmid. The mated yeast was plated on quadruple dropout medium and assayed for α-gal activity. The interaction between whole-X protein and the protein obtained from positive colonies was further confirmed by repeating yeast two-hybrid. After extracting and sequencing of plasmid from blue colonies, we carried out analysis by bioinformatics. RESULTS: After sequencing, 27 of 45 clones (60%) were found encoding the pre-X peptide. Eighteen of twenty-seven clones (66.7%) of pre-X coding sequences were found from genotype C. Five positive colonies that interacted with whole-X protein were obtained and sequenced; namely, fetuin B, UDP glycosyltransferase 1 family-polypeptide A9, mannose-P-dolichol utilization defect 1, fibrinogen-B beta polypeptide, transmembrane 4 superfamily member 4CD81 (TM4SF4).CONCLUSION: The pre-X gene exists in HBV genome.Genes of proteins interacting with whole-X protein in hepatocytes were successfully cloned. These results brought some new clues for studying the biological functions of whole-X protein.
基金The authors thank the National Natural Science Foundation of China for its providing financial support to this research ( No. 30370015).
文摘The terrestrial yeasts have been receiving great attention in science and industry for over one hundred years because they can produce many kinds of bioactive substances. However, little is known about the bioactive substances of marine yeasts. In recent years, it has been found that marine yeasts have wide applications in mariculture and other fields. Therefore,marine yeasts, the bioactive substances from them and the applications of marine yeasts themselves and the bioactive substances they produced are reviewed in this paper.
基金Project(NSFC-GDNSF U0933002) supported by the Joint Funds of the National Natural Science Foundation of China and the Natural Science Foundation of Guangdong Province,ChinaProject(50978122) supported by the National Natural Science Foundation of China
文摘Protoplasts from Candida tropicalis and Candida lipolytica were fused under an optimized electrofusion (electrical pulse strength 6 kV/cm, pulse duration time 40μs and pulse times 5) and then regenerated on YEPD media for achieving new genotypes with higher chromium loading capacity. A target fusant RHJ-004 was screened out by its chromium resistance and chromium-sorbing capacity tests for further research. The comparative study of applicability shows that the fusant has better performance than its parent strains in respect of solution pH, biomass concentration and chromium loading capacity. Especially for treating low concentration Cr(VI) (〈20 mg/L), above 80% chromium is sequestered from the aqueous phase at pH 1-9. Atomic force microscopy (AFM) visualizes the distribution of chromium on the binding sites of the cells, suggesting that the altered surface structure and intracellular constitutes of the fusant associate with its increased biosorption capacity. The rapid biosorption processes of chromium foUow the Langmuir model well.
基金Supported by the National Natural Science Foundation of China,No.30471532
文摘AIM: To investigate the biological function of HBcAg in pathogenesis of HBV replication in peripheral blood mononuclear cells (PBMCs).METHODS: HBcAg region was amplified by polymerase chain reaction (PCR) and HBV HBcAg bait plasmid pGBKT7-HBcAg was constructed by routine molecular biological methods. Then the recombinant plasmid DNA was transformed into yeast AH109. After the HBV core protein was expressed in AH109 yeast strains (Western blot analysis), yeast-two hybrid screening was performed by mating AH109 with Y187 containing leukocyte cDNA library plasmid. Diploid yeast cells were plated on synthetic dropout nutrient medium (SD/-Trp-Leu-His- Ade) (QDO) and synthetic dropout nutrient medium (SD/-Trp-Leu-His-Ade) (TDO). The second screening was performed with the LacZ report gene ( yeast cells were grown in QDO medium containing X-a-gal). The interaction between HBV core protein and the protein obtained from positive colonies was further confirmed by repeating yeast-two hybrid. After plasmid DNA was extracted from blue colonies and sequenced, the results were analyzed by bioinformatic methods.RESULTS: Eighteen colonies were obtained and sequenced, including hypermethylated in cancer 2 (3 colones), eukaryotic translation elongation factor 2 (2 colones), acetyl-coenzyme A synthetase 3 (1 colone), DNA polymerase gamma (1 colone), putative translation initiation factor (1 colone), chemokine (C-C motif) receptor 5 (1 colone), mitochondrial ribosomal protein L41 (1 colone), kyot binding protein genes (1 colone), RanBPM (1 colone), HBeAg-binding protein 3 (1 colone), programmed cell death 2 (1 colone). Four new genes with unknown function were identified.CONCLUSION: Successful cloning of genes of HBV core protein interacting proteins in leukocytes may provide some new clues for studying the biological functions of HBV core protein.
文摘Interactions are the essence of all biomolecules because they cannot fulfill their roles without interacting with other molecules. Hence, mapping the interactions of biomolecules can be useful for understanding their roles and functions. Furthermore, the development of molecular based systems biology requires an understanding of the biomolecular interactions. In recent years, the mapping of protein-protein interactions in different species has been reported, but few reports have focused on the large-scale mapping of protein-protein interactions in human. Here, we review the developments in protein interaction mapping and we discuss issues and strategies for the mapping of the human protein interactome.
文摘Effect of low-pressure carbonation (LPC) on heat inactivation of Saccharomyces cerevisiae was investigated. The cell suspension was carbonated at 1 MPa and 4℃ for 15 min and subsequently heated from 51 to 61 ℃ and 5 s to 5 min (heating with LPC). As a control experiment, cell suspension was heat-treated under atmospheric pressure without LPC (heating). The inactivation ratio of heating at 53℃ and 55℃ for l rain with LPC was approximately 1 log order higher than heating alone. Extending heating time to 5 min did not widen the difference in the inactivation ratio between heating with LPC and heating alone at both heating temperatures. At 57℃, the difference in inactivation ratio increased from 1 to 2.5 log order with extending treatment time from 5 to 15 s. The results suggested that the enhanced inactivation effect by LPC was obtained at the higher temperature with short time treatment than the lower temperature with longer time treatment. Under fluorescence microscope observation of LPC-treated cell stained with LysoSensor probe, it seemed that LPC was hardly able to acidify the cytoplasm ofS. cerevisiae. It is considered that the ability orS. cerevisiae ceils to keep their cytoplasmic pH during LPC resulted in the inferior increase in heat inactivation ratio by LPC as compared with bacteria in the previous studies.
基金supported by the National Natural Science Key Foundation of China (Nos. 41202119 and 41272177)the National Natural Science Key Foundation of China (No. 41202237)the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)
文摘Using lignite samples, selected from Zhaotong basin, Yunnan province, China, as the parent source, simulating experiments of lignite biogas were conducted with 0.1% methanol, 5 mg/L yeast extract and 0.2 mol/L sodium acetate solutions as the exogenous substance respectively. Variation characteristics of gas production, gas composition, VFA content and activity of coenzyme 1:42o in the simulated process were analyzed to discuss the influence of different substrates on lignite biogas generation. The results show that 0.1% methanol and 5 mg/L yeast extract solutions increase VFA contents in the biogas generation system (p 〈 0.05) and inhibit coenzyme F420 and methanogen activities significantly, so they decrease both gas amounts (p 〈 0.05) and CH4 contents (p 〈 0.05). 0.2 mol/L sodium acetate solution activates coenzyme F42o and methanogen activities and improves the efficiency of enzymatic reaction, so the gas quantity (p 〈 0.05) and the CH4 content (p 〈 0.01) increase significantly. Therefore, sodium acetate can be one kind of good exogenous substance for the generation of lignite biogenic gas.
文摘Serratia marcescens ECUI010, as an extracellular lipase and a significant catalyst, which had been widely employed to catalyze various chemical reactions such as non-specific, stereo-specific hydrolysis and esterification for industrial biocatalytic applications, was previously mostly expressed intracellularly as inclusion bodies in Escherichia coli. Denaturation and renaturation of inclusion bodies had a significant influence on the lipase activity. Thereupon, our present work described the secretion expression of gene encoding of this lipase in Pichia pastoris GS 115 and characterization of the recombinant enzyme. Firstly, the obtained lipA gene fragment was introduced into P. pastoris expression vector pPIC9K, the lipA gene without its signal sequence were cloned downstream to the alpha-mating factor signal and expressed in P. pastoris GS115 under the control of AOXI promoter, and the recombinant plasmid pPIC9K-lipA was transformed into P. pastoris strain GS115 by electroporation, and this recombinant P. pastoris were identified by PCR. Then lipase activity was detected on BMMY-tributyrin and olive oil agar plates containing Rhodamine B. Transformants with lipase activity by screening were induced 6 days by methanol, one band of 77 kDa protein could be observed by 10% SDS-PAGE. p-nitrophenyl esters of fatty acids were used as the substrates in an automated activity assay of liquid culture media. The pH and temperature optimum of lipase were pH 8.5 and 40℃ respectively. The stability and effects of metal ions and other reagents were also determined. However, the recombinant fusion intended for secretion was efficiently secreted in a percentage of close to 90% and remained stable even in rich medium at high cell density cultures, yielding values of over 4 U of lipase activity per milliliter of culture media supernatant.
基金the National Natural Science Foundation of China (No. 29836130).
文摘The reversed micelles were formed with cationic cetyltrimethylammonium bromide (CTAB) as surfactant and n-hexanol as cosolvent in the CTAB (50mmol.L-1)/hexanol (15% by volume)/hexane system. Cibacron Blue 3GA (CB) as an affinity ligand in the aqueous phase was directly introduced to the reversed micelles with electrostatic interaction between anionic CB and cationic surfactant. High molecular weight (Mr) protein, yeast alcohol dehydrogenase (YADH, Mr = 141000) from baker's yeast, has been purified using the affinity reversed micelles by the phase transfer method. Various parameters, such as CB concentration, pH and ionic strength, on YADH forward and backward transfer were studied. YADH can be transferred into and out from the reversed micelles under mild conditions (only by regulation of solution pH and salt concentration) with the successful recovery of most YADH activity. Both forward and backward extractions occurred when the aqueous phase pH>pI with electrostatic attraction between YADH and CTAB. The recovery of YADH activity and purification factor have been improved with addition of a small amount of affinity CB. The recovery of YADH activity obtained was ~99% and the purification factor was about 4.0-fold after one cycle of full forward and backward extraction. The low ionic strength in the initial aqueous phase might be responsible for the YADH transfer into the reversed micellar phase.
基金Supported by the National Natural Science Foundation of China, Nos. C03011402 and C30070690 and the Research and Technique Foundation of PLA during the 9~(th)-Five year plan period, No. 98D063 and the Launching Foundation for Student Studying Abroad of PLA, No. 98H038 and the Youth Research and Technique Foundation of PLA during the 10~(th)-Five Year Plan Period, No. 01Q138 and the Research and Technique Foundation of PLA during the 10~(th)-Five Year Plan Period, No. 01MB135
文摘AIM: To investigate the biological function of F protein by yeast two-hybrid system. METHODS: We constructed F protein bait plasmid by cloning the gene of F protein into pGBKT7, then recombinant plasmid DNA was transformed into yeast AH109 (a type). The transformed yeast AH109 was mated with yeast Y187 (α type) containing liver cDNA library plasmid in 2×YPDA medium. Diploid yeast was plated on synthetic dropout nutrient medium (SD/-Trp-Leu-HisAde) containing X-α-gal for selection and screening. After extracting and sequencing plasmids from positive (blue) colonies, we underwent sequence analysis by bioinformatics. RESULTS: Thirty-six colonies were selected and sequenced. Among them, 11 colonies were zymogen granule protein, 5 colonies were zinc finger protein, 4 colonies were zinc-α-2-glycoprotein, 1 colony was sialyltransferase, 1 colony was complement control protein factor I, 1 colony was vitronectin, and 2 colonies were new genes with unknown function. CONCLUSION: The yeast two-hybrid system is an effective method for identifying hepatocyte proteins interacting with F protein of hepatitis C virus. F protein may bind to different proteins. 2005 The WJG Press and Elsevier Inc. All rights reserved
基金Sponsored by the Natural Science Foundation of Heilongjiang Province (Grant No.C200609)the National Science and Technology Supported Programe (Grant No.2006BAD07A01)
文摘To study recycled trashes from shrimps and crabs in the sea through chitinase secreted by microorganisms,the chitinase gene chit2 was cloned and sequenced from Beauveria bassiana by the polymerase chain reaction(PCR),and was ligated into the yeast expression vector pYES2.The expression vector plasmid was transformed into Saccharomyces cerevisiae H158.Gene expression took place upon induction with 2% galactose.The measurement of enzyme activity shows that the expression production can be expressed in active forms and secreted to the medium.The enzyme activity approaches the peak of 0.63 U/mL when the culture time is 36 h.
文摘Forty eight individually fed Awassi male lambs were used in factorial experiment to investigate their responses to feeding concentrate diets containing three levels of dietary crude protein (CP), each was offered without or with baker's yeast (SC) at rate of 0.5% (on dry matter (DM) basis). Concentrates were offered at rate of 3% of live body weight with free choice of barley straw. Results revealed that higher (P 〈 0.05) digestible dry matter (DDM) and digestible organic matter (DOM) intakes were achieved due to feeding medium level of CP and to the addition of SC. Addition of SC improved (P 〈 0.05) gain, lambs fed medium and high levels gained higher (P 〈 0.05) than those fed the low level of dietary CP. Feed conversion ratio (FCR) based on DM and organic matter (OM) intakes was not significantly affected by level of dietary CP or addition of yeast. Even though, less amount of N required per unit of gain was achieved with low and medium as compared to high levels. Higher DM, nitrogen free extract (NFE) and hemicellulose (P 〈 0.05), OM, CP, crude fiber (CF) and cellulose (P 〈 0.01) digestibilities were achieved in lambs fed the medium level of CP, whereas, no significant effect was observed on ether extract (EE), neutral detergent fiber (NDF) and acid detergent fiber (ADF) digestibilities. Results also revealed that digestibility of almost all nutrients was improved with different extent due to addition of SC. Effect of interaction between levels of dietary CP and addition of SC referred to the preferability of addition of SC with medium level of dietary protein.
文摘Corn cobs are a promising lignocellulosic substrate for the production of biofuels like bioethanol via conventional yeast or biodiesel via oleaginous yeast. Pretreatment of the substrate is essential for further hydrolysis and fermentation steps. This study focused on the steam explosion method as pretreatment. Therefore, different steam explosion severities were evaluated. The content of glucan, xylan and Klason lignin was examined. Xylan degraded with increasing severity from 412.7 g·kg-1 (untreated) to a minimum of 127.3 g-kg1 dry matter (190 ℃/30 min). Glucan concentrations increased from 315.1 g·kg1 (untreated) to a maximum of 371.6 g·kg-1 dry matter (200 ℃/20 min). For soluble lignin, an increase could be observed at rising severity, from 145.3 g·kg-l (untreated) to a maximum of 214.9 g·kg-1 dry matter (190 ℃/30 min). Furthermore, the mass recovery was calculated. At harsher pretreatment conditions, a significant mass loss was observed, estimated by the ash content in the recovered dry matter. The lowest recovery rate was observed for SF = 4.13 (190 ℃/30 min) with 68.39%. The produced inhibitors were evaluated.
文摘Date palm (Phoenix dactylifera L.) fruit is an important component in arid and semi-arid diet regions of the world. The present study pointed out microbial investigating of date palm collected from National wholesale market in Fez city in the center north of Morocco. The results reveal that samples dates studied are contaminated by bacteria such as TAMF (total aerobic mesophilic flora), ASR (anaerobic sulfite reducing), yeasts and molds. The percentage of yeasts isolated is 50% for Saccharomyces cervisae, 10% for Zygosaccharomyces fermentati, 20% for Hansenula anomala, 10% for Lodderomyces elongisporus and 10% for Kluyveromyces fragilis. The frequency of molds distribution is 51% for Aspergillus niger, 33% for Penicillium notatum and 16% for Rhizopus oryzae. Newman and keuls grouping test shows that fungal germs distribution is equal for yeast and molds in all samples analyzed. In the opposite bacterial grouping test shows greet difference between groups of bacteria isolated from date's samples.
文摘OBJECTIVES: Heparin-binding neurite-promoting factor (HBNF) is a heparin-binding protein primarily found in the brain, which can stimulate neurite outgrowth in vitro. We expressed recombinant human heparin-binding neurite-promoting factor (hrHBNF) using a yeast system, and observed its activity in stimulating neurite outgrowth in vitro. METHODS: cDNA encoding mature human HBNF was amplified from total RNA isolated from an 18-week aborted human fetal brain by RT-PCR method. After amplification, the HBNF cDNA gene was cloned into pPIC9K, a shuttle expression vector for yeast system. The positive clone of expression vector bearing HBNF cDNA gene was obtained by screening. Verified recombinant vector was then used to transform Pichia strain GS115 by electroporation. His(+) transformants were selected on minimal dextrose medium (MD) plates which were histidine free. His(+) yeast recombinants with multi-copy inserts were screened in vivo by their resistance to G418. PCR analysis was used to confirm the integration of the HBNF cDNA gene into the Pichia genome. Secreted expression of hrHBNF protein in culture medium was obtained when the positive clone containing the HBNF cDNA gene was induced by methanol. The hrHBNF product purified by gel chromatography was added to cultured rat pheochromocytoma (PC12) cells to observe its ability to stimulate neurite outgrowth. RESULTS: In the recombinant expression vector, the insert was sequenced to show exactly the sequence encoding human HBNF according to Genbank data. The HBNF cDNA gene was cloned downstream to the alpha-factor, and its open reading frame was in frame with the alpha-factor signal sequence in pPIC9K. SDS-PAGE showed that the molecular weight of the induced expression product was about 18 kDa, consistent with that of human HBNF reported in the literature. The protein product did promote neurite outgrowth in cultured rat pheochromocytoma (PC12) cells. CONCLUSION: Recombinant human heparin-binding neurite-promoting factor can be expressed with a yeast system, and its product possesses the biological activity to promote neurite outgrowth.