[Objective] To study the germination characteristics and secondary metabolism of Scutellaria baicalensis Georgi seeds under different temperatures.[Method]The activities of superoxide dismutase(SOD)and peroxidase(...[Objective] To study the germination characteristics and secondary metabolism of Scutellaria baicalensis Georgi seeds under different temperatures.[Method]The activities of superoxide dismutase(SOD)and peroxidase(POD)were determined with lactoflavine-NBT method and guaiacol-colorimetry assay,respectively.The catalase(CAT),ascorbate peroxidase(APX),phenylalanine ammonia-lyase(PAL)and cinnamic acid 4-Hydroxylase(C4H)were determined with ultraviolet spectrophotometry.The secondary metabolites were detected by High Performance Liquid Chromatography(HPLC).[Result]The germination percentage,germination potentiality and germination index were seriously affected by low or high temperature.The proper germination temperature was 20-25 ℃.The activities of SOD,POD and CAT were significantly decreased as comparison to suitable temperature.The activities of PAL and C4H were also significantly decreased as comparision to suitable temperature which was accordance to the secondary metabolites.There was a positive correlation between the flavonoids content and the PAL and C4H activity(r=0.956,r=0.951,P0.05).[Conclusion]The quality of the skullcaps could be improved by improving the activity of PAL and C4H.The proper temperature for the seed germination and the formation of secondary metabolites was 20 ℃.展开更多
[Objective] This study aimed to investigate the primary and secondary metabolisms during the germination of Scutellaria baicalensis Georgi seeds under different light intensities. [Method] The activities of CHL, solub...[Objective] This study aimed to investigate the primary and secondary metabolisms during the germination of Scutellaria baicalensis Georgi seeds under different light intensities. [Method] The activities of CHL, soluble sugar, PAL, C4H and CHS were determined with ultraviolet spectrophotometry. The secondary metabolites were detected by High Performance Liquid Chromatography (HPLC). [Result] The results indicate that the germination of Scutellaria baicalensis Georgi seeds is not sensitive to light and the seedlings were very sensitive to light. The CHL, soluble sugar, PAL, C4H and CHS continuously increased with light intensity. The content of secondary metabolites also increased. [Conclusion] Light increased the formation of leaf photosynthetic pigment, thereby affecting the primary metabolites. The activities of PAL, C4H and CHS significantly increased with the development of light intensity. Finally the secondary metabolites of medicinal plants increased sharply. Therefore, the quality of Scutellaria baicalensis Georgi materials can be improved by increasing the light intensity moderately.展开更多
[Objective] To investigate the primary and secondary metabolism during the seed germination of Scutellaria baicalensis Georgi. [Method] The activities of SOD and POD were determined with lactoflavine-NBT method and gu...[Objective] To investigate the primary and secondary metabolism during the seed germination of Scutellaria baicalensis Georgi. [Method] The activities of SOD and POD were determined with lactoflavine-NBT method and guaiacol-colorimetry as- say, respectively. The activities of CAT, APX,PAL and C4H were determined with ultraviolet spectrophotometry. The contents of secondary metabolites were detected by High-performance Liquid Chromatography (HPLC). [Result] The results indicate that the soluble sugar content decreased during the first 5 days and then increased when the cotyledons formed. The contents of PAL, C4H and CHS continuously in- creased at different stages during the seed germination process. The secondary metabolites also showed the consistent variation trend. In addition, the contents of secondary metabolites had significant positive correlation with the key enzyme activi- ty. [Conclusion] The formation of secondary metabolites is significantly positively cor- related with the key enzyme during the seed germination process. Therefore, the key enzyme activity can be enhanced by adopting appropriate measures to improve the secondary metabolites, thereby obtaining high-quality medicinal materials.展开更多
The gene encoded for tryptophan decarboxylase (TDC), which is the key enzyme in terpenoil indole alkaloids pathway, was targeted to different subcellular compartments and stably expressed in transgenic tobacco (Nicoti...The gene encoded for tryptophan decarboxylase (TDC), which is the key enzyme in terpenoil indole alkaloids pathway, was targeted to different subcellular compartments and stably expressed in transgenic tobacco (Nicotiana tabacum L.) plants at the levels detected by Western blot and tryptamine accumulation analysis. It was shown that the TDC was located in subcellular compartments, the chloroplasts and cytosol. The recombinant TDC targeted to chloroplasts and cytosol in tobacco plants was effectively expressed as soluble protein by Western blot analysis and enzymatic assay. The level of tryptamine accumulation in chloroplast was higher than that in cytosol and very low in vacuole and endoplasmic reticulum (ER) to be hardly detected by Western blot analysis. It was indicated that the highest amount of tryptamine was in chloroplasts, lower in endoplasmic reticula and the lowest in vacuoles as compared to those in wild type plants. The TDC targeted to different subcellular compartments of tobacco plants and its expression level were studied by different nucleotide sequences coding signal peptides at 5'-end of tdc gene in order to know the effects of the TDC in compartmentation on its functionality.展开更多
This study aimed to investigate the primary and secondary metabolism of Scutel aria baicalensis Georgi during seed germination process under different il umination time. [Method] Chlorophyl (CHL) content, soluble su...This study aimed to investigate the primary and secondary metabolism of Scutel aria baicalensis Georgi during seed germination process under different il umination time. [Method] Chlorophyl (CHL) content, soluble sugar content, phenylalanine ammonia lyase (PAL) activity and cinnamate-4-hydroxylase (C4H) ac-tivity were determined with ultraviolet spectrophotometry. The secondary metabolites were detected by high performance liquid chromatography (HPLC). [Result] The re-sults indicated that the germination of S. baicalensis seeds was not sensitive to light and the seedlings were very sensitive to light. CHL content, soluble sugar content, PAL activity and C4H activity increased continuously with the il umination time. The secondary metabolites showed a similar trend. [Conclusion] Il umination time promoted the formation of leaf photosynthetic pigments, thereby affecting the synthesis of primary and secondary metabolites and the activities of PAL and C4H. Therefore, the quality of S. baicalensis can be improved by regulating the il umina-tion time appropriately.展开更多
Through several waves of technological research and un‐matched innovation strategies,bio‐catalysis has been widely used at the industrial level.Because of the value of enzymes,methods for producing value‐added comp...Through several waves of technological research and un‐matched innovation strategies,bio‐catalysis has been widely used at the industrial level.Because of the value of enzymes,methods for producing value‐added compounds and industrially‐relevant fine chemicals through biological methods have been developed.A broad spectrum of numerous biochemical pathways is catalyzed by enzymes,including enzymes that have not been identified.However,low catalytic efficacy,low stability,inhibition by non‐cognate substrates,and intolerance to the harsh reaction conditions required for some chemical processes are considered as major limitations in applied bio‐catalysis.Thus,the development of green catalysts with multi‐catalytic features along with higher efficacy and induced stability are important for bio‐catalysis.Implementation of computational science with metabolic engineering,synthetic biology,and machine learning routes offers novel alternatives for engineering novel catalysts.Here,we describe the role of synthetic biology and metabolic engineering in catalysis.Machine learning algorithms for catalysis and the choice of an algorithm for predicting protein‐ligand interactions are discussed.The importance of molecular docking in predicting binding and catalytic functions is reviewed.Finally,we describe future challenges and perspectives.展开更多
Fatty acid synthase (FAS) attracts more and more attention recently as a potential target for metabolic syndrome,such as cancer, obesity, diabetes and cerebrovascular disease. FAS inhibitors are widely existed in pl...Fatty acid synthase (FAS) attracts more and more attention recently as a potential target for metabolic syndrome,such as cancer, obesity, diabetes and cerebrovascular disease. FAS inhibitors are widely existed in plants, consisting of diversiform compounds. These inhibitors exist not only in herbs also in many plant foods, such as teas, allium vegetables and some fruits. These effective components include gallated catechins, theaflavins,flavonoids, condensed and hydrolysable tannins, thioethers,pentacyclic triterpenes, stilbene derivatives, etc, and they target at the different domains of FAS, showing different inhibitory mechanisms. Interestingly, these FAS inhibitor-contained herbs and plant foods and their effective components are commonly related to the prevention of metabolic syndromes including fatreducing and depression of cancer. From biochemical angle,FAS can control the balance between energy provision and fat production. Some studies have shown that the effects of those effective components in plants on metabolic syndromes are mediated by inhibiting FAS. This suggests that FAS plays a critical role in the regulation of energy metabolism, and the FAS inhibitors from plants have significant potential application value in the treatment and prevention of metabolic syndromes.展开更多
AIM: To investigate the relationship between the superoxide dismutase (SOD), malondialdehyde (MDA) metabolic changes and the gastric carcinogenesis.METHODS: The SOD activity and MDA content were measured in the ...AIM: To investigate the relationship between the superoxide dismutase (SOD), malondialdehyde (MDA) metabolic changes and the gastric carcinogenesis.METHODS: The SOD activity and MDA content were measured in the gastric tissues from the focus center, peripheral and far-end areas of gastric carcinoma (n = 52) arid gastric ulcer (n = 10). All the tissues were subjected to routine histological examinations and classifications.RESULTS: The SOD activity was greatly reduced but the MDA content was markedly increased in the center areas of the non-mucous gastric carcinoma (non-MGC); and the poorly differentiated gastric carcinoma varied. The SOD activity was gradually decreased and the MDA content was gradually increased in the tissues from the focus far-end, peripheral to center areas of non-MGC. Both of the SOD activity and the MDA content were significantly declined and were respectively at same low level in the tissues from the focus center, peripheral, and far-end area with the mucous gastric carcinoma (MGC). In contrast to the gastric ulcer and grade I or II of non-MGC, the same level of the SOD activity and the MDA content were found in the focus center areas. Between non-MGC (groups A-D) and gastric ulcer (group F), the differences of SOD activity and MDA content were very noticeable in the gastric tissues from the focus peripheral and far-end areas, in which the SOD activity showed noticeable increase and the MDA content showed noticeable decreasein the gastric ulcer.CONCLUSION: The active free radical reaction in the gastric tissues can induce the carcinogenesis of non-MGC. The utmost low ability of antioxidation in the gastric tissues can induce the carcinogenesis of MGC. The metabolic change of the free radicals centralized mostly in the center of ulcerated lesions only, which suggested the ability of antioxidation was declined only in these lesions. However, the metabolism of free radicals varied significantly and the ability of antioxidation declined not only in the local focus area but also in the abroad gastric tissues with gastric carcinoma.展开更多
The objective of this study was to investigate the influence ofa phytogenic feed additive (PFA) to late-gestation (d 90) and lactation sows on their reproduction performance. Sixty Large White × Landrace prim...The objective of this study was to investigate the influence ofa phytogenic feed additive (PFA) to late-gestation (d 90) and lactation sows on their reproduction performance. Sixty Large White × Landrace primiparous sows were divided into four groups (fifteen sows per group). The control group was fed with basal diet, the others were fed with basal diet supplemented with 0.02%, 0.04% and 0.06% PFA, respectively. Compared with the control, the sows in 0.04% PFA group had higher feed intake during lactation and higher litter weaning weight (P 〈 0.05). At farrowing, glucose level in 0.04% PFA sows was higher than the control and sows in 0.02% PFA had the highest IgG content among the treatments (P 〈 0.05). On day 7 of lactation, serum urea nitrogen contents were lower in response to PFA supplementation compared to the control (P 〈 0.05). At the same time, sows fed the 0.06% PFA diet increased the lysozyme activity (P 〈 0.05). The levels of milk lactose and IgG were increased in 0.02% and 0.04% PFA groups (P 〈 0.05). In conclusion, feeding PFA improved sows and litter performance, serum metabolite concentrations, lgG level and lysozyme activity at postpartum and milk quality.展开更多
Invertase is a key enzyme in sucrose catabolism and crucial for plant assimilate distribution. With the development of molecularbiology, a lot of invertsae genes were cloned recently, and significant progress have bee...Invertase is a key enzyme in sucrose catabolism and crucial for plant assimilate distribution. With the development of molecularbiology, a lot of invertsae genes were cloned recently, and significant progress have been made in regulators on the expression of invertase genes.Thus, this article summarized theresearch progress of invertase in biological characteristics, molecular characteristics and expression regulation.展开更多
The Manila clam Venerupis philippinarum is a good biomonitor/bioindicator to marine metal pollution and is frequently used in aquatic toxicology. Two dominant pedigrees (white and zebra) of clam are distributed in the...The Manila clam Venerupis philippinarum is a good biomonitor/bioindicator to marine metal pollution and is frequently used in aquatic toxicology. Two dominant pedigrees (white and zebra) of clam are distributed in the Bohai Sea; however, little attention has been paid to potential biological differences between these two pedigrees. In this study, we tested the sensitivity of both pedigrees to marine metal (cadmium and zinc) pollution biomonitoring and marine environmental toxicology. Results demonstrate significant biological differences in gills of white and zebra clams based on metabolic profiles and antioxidant enzyme activities. In addition, we found that hypotaurine, malonate and homarine were relatively high in white clam gills, while alanine, arginine, glutamate, succinate, 4-aminobutyrate, taurine and betaine were high in zebra clam gills. Zebra clam gills were also more sensitive to a mixture of Cd and Zn, as shown by antioxidant enzyme activities and metabolic profiles, but white clam gills could accumulate more Zn. Therefore, we suggest that the white pedigree can be used as a biomonitor to marine Zn pollution, whereas the zebra pedigree can be used for toxicology studies on Cd and Zn mixed pollution.展开更多
The growth of filamentous microorganism is contributed by tip extension and branching. The microscopic growth of filamentous microorganism means the growth process from one or a few spores. In order to describe the mi...The growth of filamentous microorganism is contributed by tip extension and branching. The microscopic growth of filamentous microorganism means the growth process from one or a few spores. In order to describe the microscopic process, a population morphologically structured model is proposed, in which three morphological compartment and their interactions were considered, and the heterogeneity of hyphal growth was included. The model was applied to describe the microscopic growth of Streptomyces tendae and Geotrichum candidum with good agreement. From model prediction, it is concluded that if the number of hyphae is large enough (macroscopic growth), the specific growth rate of filamentous microorganism and the ratio of morphological forms in hyphae will become constant.展开更多
UGPase (UDP-glucose pyrophosphorylase), one of the primary enzymes concerned with carbohydrate metabolism, catalyzes the formation of UDPG. By inserting the UGPase cDNA fragment cloned from Saccharum officinarum int...UGPase (UDP-glucose pyrophosphorylase), one of the primary enzymes concerned with carbohydrate metabolism, catalyzes the formation of UDPG. By inserting the UGPase cDNA fragment cloned from Saccharum officinarum into PQE-30, the prokaryotic expression vector of PQE-UGP was successfully constructed. Then the vector plasmid of PQE-UGP was transformed into host bacteria M 15 and the expression of target gene was induced by Isopropyl β-D-1-Thiogalactopyranoside (IPTG). The research laid foundation for study on the prokaryotic expression of UGPase.展开更多
Many studies suggest that ethylene plays an important role in regulating metabolite synthesis. Dendrobium plants are traditional Chinese medicine and nowadays its medicinal components are known to be secondary metabol...Many studies suggest that ethylene plays an important role in regulating metabolite synthesis. Dendrobium plants are traditional Chinese medicine and nowadays its medicinal components are known to be secondary metabolites. In present study, a homolog of ACC oxidase (ACO) gene was isolated from flowers of Dendrobium officinale Kimura et Migo by PCR-method. The obtained cDNA of DoACO is 970 bp long and contains an open reading frame (ORP) encoding a protein with 314 amino acid residues. The DoACO shows high identity to its homologues from other plant species, that has 94.8% closest amino acid sequence of related protein with the ACO from Dendrobium hybrid cultivar. The putative ORP of the obtained sequence could encode a proper protein in respect of molecular weight under T -Lac promoter in E. coli.展开更多
Polymorphisms associated with genes coding for a variety of drug-metabolizing enzymes (DMEs) and associated transport proteins can influence the drug metabolism rate of individuals, potentially affecting the efficac...Polymorphisms associated with genes coding for a variety of drug-metabolizing enzymes (DMEs) and associated transport proteins can influence the drug metabolism rate of individuals, potentially affecting the efficacy of drug and the occurrence of adverse reactions. Single nucleotide polymorphisms (SNPs) are prevalent in all types of genetic variations. Reliable SNP genotyping provides excellent markers for detecting genetic polymolphisms, genetic disorders, and resistance of pathogen to drug, which are needed for the genetic diagnosis of disease and subtle genetic factors. With a large number of SNP genotyping studies being conducted, a lot of novel SNP identifying methods have been developed. Several SNP genotyping methods and techniques have been introduced for clinical test. These include TaqMan drug metabolism genotyping assays, pH-sensing semiconductor system, high-resolution melting curve analysis (HRM) of polymerase chain reaction (PCR) amplicons, novel multiplexed electrochemical biosensor with non-fouling surface, DNA hybridization detection using less than 10-nm gap silicon nanogap structure, tetra-primer ARMS-PCR method, acoustic detection of DNA conformation in genetic assays combined with PCR, microbeads-mass spectrometry (MEMS)-based approach, and liquid chromatography-electrospray ionization mass spectrometry. Personalized medicine has changed the conventional ways of using drugs according to experiences. It focuses on making the individualized pattern for each individual based on their own characteristics. Lots of researchers are using the analysis of clinical samples to explain the relationship between the drug adverse reactions and genetic polymorphisms. But it takes a long time from collecting the blood samples for DNA extraction and genotyping to getting results on the side effect of drug through clinical study. Therefore, it is desirable to develop improved in vitro methods to study the drug metabolizing-enzymes and transport protein genetic polymorphisms.展开更多
基金Supported by Technology Development Plan of Shandong Province(2008GG2NS02022)Agricultural Seed Project in Shandong Province(2009LZ01-03)National Key Basic Research Program(2007CB512601)~~
文摘[Objective] To study the germination characteristics and secondary metabolism of Scutellaria baicalensis Georgi seeds under different temperatures.[Method]The activities of superoxide dismutase(SOD)and peroxidase(POD)were determined with lactoflavine-NBT method and guaiacol-colorimetry assay,respectively.The catalase(CAT),ascorbate peroxidase(APX),phenylalanine ammonia-lyase(PAL)and cinnamic acid 4-Hydroxylase(C4H)were determined with ultraviolet spectrophotometry.The secondary metabolites were detected by High Performance Liquid Chromatography(HPLC).[Result]The germination percentage,germination potentiality and germination index were seriously affected by low or high temperature.The proper germination temperature was 20-25 ℃.The activities of SOD,POD and CAT were significantly decreased as comparison to suitable temperature.The activities of PAL and C4H were also significantly decreased as comparision to suitable temperature which was accordance to the secondary metabolites.There was a positive correlation between the flavonoids content and the PAL and C4H activity(r=0.956,r=0.951,P0.05).[Conclusion]The quality of the skullcaps could be improved by improving the activity of PAL and C4H.The proper temperature for the seed germination and the formation of secondary metabolites was 20 ℃.
基金Supported by Agricultural Improved Variety Project of Shandong Province(No.2005LZ08,2008LZ013)~~
文摘[Objective] This study aimed to investigate the primary and secondary metabolisms during the germination of Scutellaria baicalensis Georgi seeds under different light intensities. [Method] The activities of CHL, soluble sugar, PAL, C4H and CHS were determined with ultraviolet spectrophotometry. The secondary metabolites were detected by High Performance Liquid Chromatography (HPLC). [Result] The results indicate that the germination of Scutellaria baicalensis Georgi seeds is not sensitive to light and the seedlings were very sensitive to light. The CHL, soluble sugar, PAL, C4H and CHS continuously increased with light intensity. The content of secondary metabolites also increased. [Conclusion] Light increased the formation of leaf photosynthetic pigment, thereby affecting the primary metabolites. The activities of PAL, C4H and CHS significantly increased with the development of light intensity. Finally the secondary metabolites of medicinal plants increased sharply. Therefore, the quality of Scutellaria baicalensis Georgi materials can be improved by increasing the light intensity moderately.
基金Supported by Agricultural Improved Variety Project Program of Shandong Province(2005LZ08, 2008LZ013)~~
文摘[Objective] To investigate the primary and secondary metabolism during the seed germination of Scutellaria baicalensis Georgi. [Method] The activities of SOD and POD were determined with lactoflavine-NBT method and guaiacol-colorimetry as- say, respectively. The activities of CAT, APX,PAL and C4H were determined with ultraviolet spectrophotometry. The contents of secondary metabolites were detected by High-performance Liquid Chromatography (HPLC). [Result] The results indicate that the soluble sugar content decreased during the first 5 days and then increased when the cotyledons formed. The contents of PAL, C4H and CHS continuously in- creased at different stages during the seed germination process. The secondary metabolites also showed the consistent variation trend. In addition, the contents of secondary metabolites had significant positive correlation with the key enzyme activi- ty. [Conclusion] The formation of secondary metabolites is significantly positively cor- related with the key enzyme during the seed germination process. Therefore, the key enzyme activity can be enhanced by adopting appropriate measures to improve the secondary metabolites, thereby obtaining high-quality medicinal materials.
文摘The gene encoded for tryptophan decarboxylase (TDC), which is the key enzyme in terpenoil indole alkaloids pathway, was targeted to different subcellular compartments and stably expressed in transgenic tobacco (Nicotiana tabacum L.) plants at the levels detected by Western blot and tryptamine accumulation analysis. It was shown that the TDC was located in subcellular compartments, the chloroplasts and cytosol. The recombinant TDC targeted to chloroplasts and cytosol in tobacco plants was effectively expressed as soluble protein by Western blot analysis and enzymatic assay. The level of tryptamine accumulation in chloroplast was higher than that in cytosol and very low in vacuole and endoplasmic reticulum (ER) to be hardly detected by Western blot analysis. It was indicated that the highest amount of tryptamine was in chloroplasts, lower in endoplasmic reticula and the lowest in vacuoles as compared to those in wild type plants. The TDC targeted to different subcellular compartments of tobacco plants and its expression level were studied by different nucleotide sequences coding signal peptides at 5'-end of tdc gene in order to know the effects of the TDC in compartmentation on its functionality.
基金Supported by Agricultural Improved Variety Project of Shandong Province(2005LZ08,2008LZ013)~~
文摘This study aimed to investigate the primary and secondary metabolism of Scutel aria baicalensis Georgi during seed germination process under different il umination time. [Method] Chlorophyl (CHL) content, soluble sugar content, phenylalanine ammonia lyase (PAL) activity and cinnamate-4-hydroxylase (C4H) ac-tivity were determined with ultraviolet spectrophotometry. The secondary metabolites were detected by high performance liquid chromatography (HPLC). [Result] The re-sults indicated that the germination of S. baicalensis seeds was not sensitive to light and the seedlings were very sensitive to light. CHL content, soluble sugar content, PAL activity and C4H activity increased continuously with the il umination time. The secondary metabolites showed a similar trend. [Conclusion] Il umination time promoted the formation of leaf photosynthetic pigments, thereby affecting the synthesis of primary and secondary metabolites and the activities of PAL and C4H. Therefore, the quality of S. baicalensis can be improved by regulating the il umina-tion time appropriately.
文摘Through several waves of technological research and un‐matched innovation strategies,bio‐catalysis has been widely used at the industrial level.Because of the value of enzymes,methods for producing value‐added compounds and industrially‐relevant fine chemicals through biological methods have been developed.A broad spectrum of numerous biochemical pathways is catalyzed by enzymes,including enzymes that have not been identified.However,low catalytic efficacy,low stability,inhibition by non‐cognate substrates,and intolerance to the harsh reaction conditions required for some chemical processes are considered as major limitations in applied bio‐catalysis.Thus,the development of green catalysts with multi‐catalytic features along with higher efficacy and induced stability are important for bio‐catalysis.Implementation of computational science with metabolic engineering,synthetic biology,and machine learning routes offers novel alternatives for engineering novel catalysts.Here,we describe the role of synthetic biology and metabolic engineering in catalysis.Machine learning algorithms for catalysis and the choice of an algorithm for predicting protein‐ligand interactions are discussed.The importance of molecular docking in predicting binding and catalytic functions is reviewed.Finally,we describe future challenges and perspectives.
文摘Fatty acid synthase (FAS) attracts more and more attention recently as a potential target for metabolic syndrome,such as cancer, obesity, diabetes and cerebrovascular disease. FAS inhibitors are widely existed in plants, consisting of diversiform compounds. These inhibitors exist not only in herbs also in many plant foods, such as teas, allium vegetables and some fruits. These effective components include gallated catechins, theaflavins,flavonoids, condensed and hydrolysable tannins, thioethers,pentacyclic triterpenes, stilbene derivatives, etc, and they target at the different domains of FAS, showing different inhibitory mechanisms. Interestingly, these FAS inhibitor-contained herbs and plant foods and their effective components are commonly related to the prevention of metabolic syndromes including fatreducing and depression of cancer. From biochemical angle,FAS can control the balance between energy provision and fat production. Some studies have shown that the effects of those effective components in plants on metabolic syndromes are mediated by inhibiting FAS. This suggests that FAS plays a critical role in the regulation of energy metabolism, and the FAS inhibitors from plants have significant potential application value in the treatment and prevention of metabolic syndromes.
基金Supported by the Youth Science Fund of Guangdong Province Medicine and Hygiene, No. B19960095
文摘AIM: To investigate the relationship between the superoxide dismutase (SOD), malondialdehyde (MDA) metabolic changes and the gastric carcinogenesis.METHODS: The SOD activity and MDA content were measured in the gastric tissues from the focus center, peripheral and far-end areas of gastric carcinoma (n = 52) arid gastric ulcer (n = 10). All the tissues were subjected to routine histological examinations and classifications.RESULTS: The SOD activity was greatly reduced but the MDA content was markedly increased in the center areas of the non-mucous gastric carcinoma (non-MGC); and the poorly differentiated gastric carcinoma varied. The SOD activity was gradually decreased and the MDA content was gradually increased in the tissues from the focus far-end, peripheral to center areas of non-MGC. Both of the SOD activity and the MDA content were significantly declined and were respectively at same low level in the tissues from the focus center, peripheral, and far-end area with the mucous gastric carcinoma (MGC). In contrast to the gastric ulcer and grade I or II of non-MGC, the same level of the SOD activity and the MDA content were found in the focus center areas. Between non-MGC (groups A-D) and gastric ulcer (group F), the differences of SOD activity and MDA content were very noticeable in the gastric tissues from the focus peripheral and far-end areas, in which the SOD activity showed noticeable increase and the MDA content showed noticeable decreasein the gastric ulcer.CONCLUSION: The active free radical reaction in the gastric tissues can induce the carcinogenesis of non-MGC. The utmost low ability of antioxidation in the gastric tissues can induce the carcinogenesis of MGC. The metabolic change of the free radicals centralized mostly in the center of ulcerated lesions only, which suggested the ability of antioxidation was declined only in these lesions. However, the metabolism of free radicals varied significantly and the ability of antioxidation declined not only in the local focus area but also in the abroad gastric tissues with gastric carcinoma.
文摘The objective of this study was to investigate the influence ofa phytogenic feed additive (PFA) to late-gestation (d 90) and lactation sows on their reproduction performance. Sixty Large White × Landrace primiparous sows were divided into four groups (fifteen sows per group). The control group was fed with basal diet, the others were fed with basal diet supplemented with 0.02%, 0.04% and 0.06% PFA, respectively. Compared with the control, the sows in 0.04% PFA group had higher feed intake during lactation and higher litter weaning weight (P 〈 0.05). At farrowing, glucose level in 0.04% PFA sows was higher than the control and sows in 0.02% PFA had the highest IgG content among the treatments (P 〈 0.05). On day 7 of lactation, serum urea nitrogen contents were lower in response to PFA supplementation compared to the control (P 〈 0.05). At the same time, sows fed the 0.06% PFA diet increased the lysozyme activity (P 〈 0.05). The levels of milk lactose and IgG were increased in 0.02% and 0.04% PFA groups (P 〈 0.05). In conclusion, feeding PFA improved sows and litter performance, serum metabolite concentrations, lgG level and lysozyme activity at postpartum and milk quality.
文摘Invertase is a key enzyme in sucrose catabolism and crucial for plant assimilate distribution. With the development of molecularbiology, a lot of invertsae genes were cloned recently, and significant progress have been made in regulators on the expression of invertase genes.Thus, this article summarized theresearch progress of invertase in biological characteristics, molecular characteristics and expression regulation.
基金Supported by the National Natural Science Foundation of China (No.41106102)Shandong Science Foundation of China (No. ZR2009CZ008)the 100 Talents Program of the Chinese Academy of Sciences
文摘The Manila clam Venerupis philippinarum is a good biomonitor/bioindicator to marine metal pollution and is frequently used in aquatic toxicology. Two dominant pedigrees (white and zebra) of clam are distributed in the Bohai Sea; however, little attention has been paid to potential biological differences between these two pedigrees. In this study, we tested the sensitivity of both pedigrees to marine metal (cadmium and zinc) pollution biomonitoring and marine environmental toxicology. Results demonstrate significant biological differences in gills of white and zebra clams based on metabolic profiles and antioxidant enzyme activities. In addition, we found that hypotaurine, malonate and homarine were relatively high in white clam gills, while alanine, arginine, glutamate, succinate, 4-aminobutyrate, taurine and betaine were high in zebra clam gills. Zebra clam gills were also more sensitive to a mixture of Cd and Zn, as shown by antioxidant enzyme activities and metabolic profiles, but white clam gills could accumulate more Zn. Therefore, we suggest that the white pedigree can be used as a biomonitor to marine Zn pollution, whereas the zebra pedigree can be used for toxicology studies on Cd and Zn mixed pollution.
文摘The growth of filamentous microorganism is contributed by tip extension and branching. The microscopic growth of filamentous microorganism means the growth process from one or a few spores. In order to describe the microscopic process, a population morphologically structured model is proposed, in which three morphological compartment and their interactions were considered, and the heterogeneity of hyphal growth was included. The model was applied to describe the microscopic growth of Streptomyces tendae and Geotrichum candidum with good agreement. From model prediction, it is concluded that if the number of hyphae is large enough (macroscopic growth), the specific growth rate of filamentous microorganism and the ratio of morphological forms in hyphae will become constant.
文摘UGPase (UDP-glucose pyrophosphorylase), one of the primary enzymes concerned with carbohydrate metabolism, catalyzes the formation of UDPG. By inserting the UGPase cDNA fragment cloned from Saccharum officinarum into PQE-30, the prokaryotic expression vector of PQE-UGP was successfully constructed. Then the vector plasmid of PQE-UGP was transformed into host bacteria M 15 and the expression of target gene was induced by Isopropyl β-D-1-Thiogalactopyranoside (IPTG). The research laid foundation for study on the prokaryotic expression of UGPase.
文摘Many studies suggest that ethylene plays an important role in regulating metabolite synthesis. Dendrobium plants are traditional Chinese medicine and nowadays its medicinal components are known to be secondary metabolites. In present study, a homolog of ACC oxidase (ACO) gene was isolated from flowers of Dendrobium officinale Kimura et Migo by PCR-method. The obtained cDNA of DoACO is 970 bp long and contains an open reading frame (ORP) encoding a protein with 314 amino acid residues. The DoACO shows high identity to its homologues from other plant species, that has 94.8% closest amino acid sequence of related protein with the ACO from Dendrobium hybrid cultivar. The putative ORP of the obtained sequence could encode a proper protein in respect of molecular weight under T -Lac promoter in E. coli.
基金The Influence of Artesunate on β-catenin Signaling Pathway of Hetatic Atellate Cells(Grant No.2011CDB491)
文摘Polymorphisms associated with genes coding for a variety of drug-metabolizing enzymes (DMEs) and associated transport proteins can influence the drug metabolism rate of individuals, potentially affecting the efficacy of drug and the occurrence of adverse reactions. Single nucleotide polymorphisms (SNPs) are prevalent in all types of genetic variations. Reliable SNP genotyping provides excellent markers for detecting genetic polymolphisms, genetic disorders, and resistance of pathogen to drug, which are needed for the genetic diagnosis of disease and subtle genetic factors. With a large number of SNP genotyping studies being conducted, a lot of novel SNP identifying methods have been developed. Several SNP genotyping methods and techniques have been introduced for clinical test. These include TaqMan drug metabolism genotyping assays, pH-sensing semiconductor system, high-resolution melting curve analysis (HRM) of polymerase chain reaction (PCR) amplicons, novel multiplexed electrochemical biosensor with non-fouling surface, DNA hybridization detection using less than 10-nm gap silicon nanogap structure, tetra-primer ARMS-PCR method, acoustic detection of DNA conformation in genetic assays combined with PCR, microbeads-mass spectrometry (MEMS)-based approach, and liquid chromatography-electrospray ionization mass spectrometry. Personalized medicine has changed the conventional ways of using drugs according to experiences. It focuses on making the individualized pattern for each individual based on their own characteristics. Lots of researchers are using the analysis of clinical samples to explain the relationship between the drug adverse reactions and genetic polymorphisms. But it takes a long time from collecting the blood samples for DNA extraction and genotyping to getting results on the side effect of drug through clinical study. Therefore, it is desirable to develop improved in vitro methods to study the drug metabolizing-enzymes and transport protein genetic polymorphisms.