FT Ⅰ (AAAAGGGGAAGCAGAG), a poly purine ele-ment within the myloid-lineage specific enhancer (En 1) of the mouse myeloperoxidase gene [1, 2] has been fur-ther characterised. 1, FT Ⅰ functions as a myeloid-lineage spe...FT Ⅰ (AAAAGGGGAAGCAGAG), a poly purine ele-ment within the myloid-lineage specific enhancer (En 1) of the mouse myeloperoxidase gene [1, 2] has been fur-ther characterised. 1, FT Ⅰ functions as a myeloid-lineage specific transcription regulatory element; 2, WEHI 3BD+ cells have higher binding activity to FT Ⅰ and express the proteins which could form the unique DNA-protein com-plex(es) of FT Ⅰ;. 3, The essential sequence for the specific DNA-protein interactions of FT Ⅰ is AAAAGGGGAAGC; 4, South-western analysis in conjunction with the compe-tition assay of the proteins binding to FT Ⅰ, has revealed a 28 kd protein in WEHI 3BD+ cells that displays the properties of the putative transcription factor which acts through FT Ⅰ. These new findings have demonstrated both the functional myeloid-lineage specificity and the novelty of FT Ⅰ.展开更多
Objective To explore the role of the extracellular signal-regulated kinase (ERK)/cAMP response element binding protein (CREB) pathway in the induction of long-term potentiation (LTP) in the anterior cingulate co...Objective To explore the role of the extracellular signal-regulated kinase (ERK)/cAMP response element binding protein (CREB) pathway in the induction of long-term potentiation (LTP) in the anterior cingulate cortex (ACC) that may be implicated in pain-related negative emotion. Methods LTP of field potential was recorded in ACC slice and the expressions of phospho-ERK (pERK) and phospho-CREB (pCREB) were examined using immunohistochemistry method. Results LTP could be induced stably in ACC slice by high frequency stimulation (2-train, 100 Hz, 1 s), while APv (an antagonist of NMDA receptor) could block the induction of LTP in the ACC, indicating that LTP in this experiment was NMDA receptor-dependent. Bath application of PD98059 (50 μmol/L), a selective MEK inhibitor, at 30 min before tetanic stimulation could completely block the induction of LTP. Moreover, the protein level of pERK in the ACC was transiently increased after LTP induction, starting at 5 rain and returning to basal at 1 h after tetanic stimulation. The protein level of pCREB was also increased after LTP induction. The up-regulation in pERK and pCREB expressions could be blocked by pretreatment of PD98059. Double immunostaining showed that after LTP induction, most pERK was co-localized with pCREB. Conclusion NMDA receptor and ERK-CREB pathway are necessary for the induction of LTP in rat ACC and may play important roles in pain emotion.展开更多
Neuronal nitric oxide synthase (nNOS) is mainly expressed in neurons,to some extent in astrocytes and neuronal stem cells.The alternative splicing of nNOS mRNA generates 5 isoforms of nNOS,including nNOS-,nNOS-,nNOS...Neuronal nitric oxide synthase (nNOS) is mainly expressed in neurons,to some extent in astrocytes and neuronal stem cells.The alternative splicing of nNOS mRNA generates 5 isoforms of nNOS,including nNOS-,nNOS-,nNOS-,nNOS-and nNOS-2.Monomer of nNOS is inactive,and dimer is the active form.Dimerization requires tetrahydrobiopterin (BH 4),heme and L-arginine binding.Regulation of nNOS expression relies largely on cAMP response element-binding protein (CREB) activity,and nNOS activity is regulated by heat shock protein 90 (HSP90)/HSP70,calmodulin (CaM),phosphorylation and dephosphorylation at Ser847 and Ser1412,and the protein inhibitor of nNOS (PIN).There are primarily 9 nNOS-interacting proteins,including post-synaptic density protein 95 (PSD95),clathrin assembly lymphoid leukemia (CALM),calcium/calmodulindependent protein kinase II alpha (CAMKIIA),Disks large homolog 4 (DLG4),DLG2,6-phosphofructokinase,muscle type (PFK-M),carboxy-terminal PDZ ligand of nNOS (CAPON) protein,syntrophin and dynein light chain (LC).Among them,PSD95,CAPON and PFK-M are important nNOS adapter proteins in neurons.The interaction of PSD95 with nNOS controls synapse formation and is implicated in N-methyl-D-aspartic acid-induced neuronal death.nNOS-derived NO is implicated in synapse loss-mediated early cognitive/motor deficits in several neuropathological states,and negatively regulates neurogenesis under physiological and pathological conditions.展开更多
文摘FT Ⅰ (AAAAGGGGAAGCAGAG), a poly purine ele-ment within the myloid-lineage specific enhancer (En 1) of the mouse myeloperoxidase gene [1, 2] has been fur-ther characterised. 1, FT Ⅰ functions as a myeloid-lineage specific transcription regulatory element; 2, WEHI 3BD+ cells have higher binding activity to FT Ⅰ and express the proteins which could form the unique DNA-protein com-plex(es) of FT Ⅰ;. 3, The essential sequence for the specific DNA-protein interactions of FT Ⅰ is AAAAGGGGAAGC; 4, South-western analysis in conjunction with the compe-tition assay of the proteins binding to FT Ⅰ, has revealed a 28 kd protein in WEHI 3BD+ cells that displays the properties of the putative transcription factor which acts through FT Ⅰ. These new findings have demonstrated both the functional myeloid-lineage specificity and the novelty of FT Ⅰ.
基金supported by National Natural Science Fundation of China (No.30870835,30821002,and 30900444)National Basic Research Program of China (No. 2007CB512303,2007CB512502,and 2006CB500807)Postdoctoral Fundation of China (No.20080440578)
文摘Objective To explore the role of the extracellular signal-regulated kinase (ERK)/cAMP response element binding protein (CREB) pathway in the induction of long-term potentiation (LTP) in the anterior cingulate cortex (ACC) that may be implicated in pain-related negative emotion. Methods LTP of field potential was recorded in ACC slice and the expressions of phospho-ERK (pERK) and phospho-CREB (pCREB) were examined using immunohistochemistry method. Results LTP could be induced stably in ACC slice by high frequency stimulation (2-train, 100 Hz, 1 s), while APv (an antagonist of NMDA receptor) could block the induction of LTP in the ACC, indicating that LTP in this experiment was NMDA receptor-dependent. Bath application of PD98059 (50 μmol/L), a selective MEK inhibitor, at 30 min before tetanic stimulation could completely block the induction of LTP. Moreover, the protein level of pERK in the ACC was transiently increased after LTP induction, starting at 5 rain and returning to basal at 1 h after tetanic stimulation. The protein level of pCREB was also increased after LTP induction. The up-regulation in pERK and pCREB expressions could be blocked by pretreatment of PD98059. Double immunostaining showed that after LTP induction, most pERK was co-localized with pCREB. Conclusion NMDA receptor and ERK-CREB pathway are necessary for the induction of LTP in rat ACC and may play important roles in pain emotion.
基金supported by the National Natural Science Foundation of China(No. 30971021,81030023 and 30901550)
文摘Neuronal nitric oxide synthase (nNOS) is mainly expressed in neurons,to some extent in astrocytes and neuronal stem cells.The alternative splicing of nNOS mRNA generates 5 isoforms of nNOS,including nNOS-,nNOS-,nNOS-,nNOS-and nNOS-2.Monomer of nNOS is inactive,and dimer is the active form.Dimerization requires tetrahydrobiopterin (BH 4),heme and L-arginine binding.Regulation of nNOS expression relies largely on cAMP response element-binding protein (CREB) activity,and nNOS activity is regulated by heat shock protein 90 (HSP90)/HSP70,calmodulin (CaM),phosphorylation and dephosphorylation at Ser847 and Ser1412,and the protein inhibitor of nNOS (PIN).There are primarily 9 nNOS-interacting proteins,including post-synaptic density protein 95 (PSD95),clathrin assembly lymphoid leukemia (CALM),calcium/calmodulindependent protein kinase II alpha (CAMKIIA),Disks large homolog 4 (DLG4),DLG2,6-phosphofructokinase,muscle type (PFK-M),carboxy-terminal PDZ ligand of nNOS (CAPON) protein,syntrophin and dynein light chain (LC).Among them,PSD95,CAPON and PFK-M are important nNOS adapter proteins in neurons.The interaction of PSD95 with nNOS controls synapse formation and is implicated in N-methyl-D-aspartic acid-induced neuronal death.nNOS-derived NO is implicated in synapse loss-mediated early cognitive/motor deficits in several neuropathological states,and negatively regulates neurogenesis under physiological and pathological conditions.