β-N-Acetyl-D-glucosaminidase (NAGase, EC.3.2.1.52) is chitinolytic enzymes and disintegrate dimmer and trimer a composition of oligomers of N-acetyl-β-D-glucosamine (NAG) into monomer. Prawn (P. vannamei) NAG...β-N-Acetyl-D-glucosaminidase (NAGase, EC.3.2.1.52) is chitinolytic enzymes and disintegrate dimmer and trimer a composition of oligomers of N-acetyl-β-D-glucosamine (NAG) into monomer. Prawn (P. vannamei) NAGase is involved in digestion and molting processes. Some pollutants in seawater affect the enzyme activity causing loss of the biological function of the enzyme, which affects the exuviating shell and threatens the survival of the animal. The effect of formaldehyde on prawn (P. vannamei) β-N-acetyl-D-glucosaminidase activity for the hydrolysis of pNP-NAG has been studied. The results show that formaldehyde, at appropriate concentrations, can lead to reversible inactivation of the enzyme, and the IC50 is estimated to be 1.05mol· L^-1. The inactivation mechanism obtained from Lineweaver-Burk plots shows that the inactivation of the enzyme by formaldehyde belongs to the competitive type. The inactivation kinetics of the enzyme by formaldehyde has been studied using the progress-of-substrate-reaction method described by Tsou, and the rate constants have been determined. The results show that k+0 is much larger than k-0, indicating the free enzyme molecule is fragile in the formaldehyde solution.展开更多
Nitrile hydratase (NHase) is an important industrial enzyme used for acrylamide production from acrylonitrile.The deactivation kinetics of NHases in free resting cells of Rhodococcus sp.was presented based on a bi-ste...Nitrile hydratase (NHase) is an important industrial enzyme used for acrylamide production from acrylonitrile.The deactivation kinetics of NHases in free resting cells of Rhodococcus sp.was presented based on a bi-steady state assumption.Effects of hydration temperature,product concentration and substrate concentration on NHase deactivation were investigated experimentally and correlated with a first order deactivation kinetics.The results showed that the hydration temperature and product concentration were major factors governing the deactivation of NHases under substrate-feeding conditions.When acrylamide concentration was higher than 250 g·L1,the deactivation of NHases became serious and the bi-steady state assumption was not applicable.When the hydration temperature was controlled at a relatively higher level such as 28°C,the total deactivation rate constant was about 2.8-fold of that at 20°C.展开更多
文摘β-N-Acetyl-D-glucosaminidase (NAGase, EC.3.2.1.52) is chitinolytic enzymes and disintegrate dimmer and trimer a composition of oligomers of N-acetyl-β-D-glucosamine (NAG) into monomer. Prawn (P. vannamei) NAGase is involved in digestion and molting processes. Some pollutants in seawater affect the enzyme activity causing loss of the biological function of the enzyme, which affects the exuviating shell and threatens the survival of the animal. The effect of formaldehyde on prawn (P. vannamei) β-N-acetyl-D-glucosaminidase activity for the hydrolysis of pNP-NAG has been studied. The results show that formaldehyde, at appropriate concentrations, can lead to reversible inactivation of the enzyme, and the IC50 is estimated to be 1.05mol· L^-1. The inactivation mechanism obtained from Lineweaver-Burk plots shows that the inactivation of the enzyme by formaldehyde belongs to the competitive type. The inactivation kinetics of the enzyme by formaldehyde has been studied using the progress-of-substrate-reaction method described by Tsou, and the rate constants have been determined. The results show that k+0 is much larger than k-0, indicating the free enzyme molecule is fragile in the formaldehyde solution.
基金Supported by the Foundation for the Authors of National Excellent Doctoral Dissertation of China (200345)the National High Technology Research and Development Program of China (2007AA02Z201)the National Basic Research Program of China (2007CB714304)
文摘Nitrile hydratase (NHase) is an important industrial enzyme used for acrylamide production from acrylonitrile.The deactivation kinetics of NHases in free resting cells of Rhodococcus sp.was presented based on a bi-steady state assumption.Effects of hydration temperature,product concentration and substrate concentration on NHase deactivation were investigated experimentally and correlated with a first order deactivation kinetics.The results showed that the hydration temperature and product concentration were major factors governing the deactivation of NHases under substrate-feeding conditions.When acrylamide concentration was higher than 250 g·L1,the deactivation of NHases became serious and the bi-steady state assumption was not applicable.When the hydration temperature was controlled at a relatively higher level such as 28°C,the total deactivation rate constant was about 2.8-fold of that at 20°C.