Brassinosteroids (BRs) are a major group of plant hormones that regulate plant growth and development. BRI1, a protein localized to the plasma membrane, functions as a BR receptor and it has been proposed that its k...Brassinosteroids (BRs) are a major group of plant hormones that regulate plant growth and development. BRI1, a protein localized to the plasma membrane, functions as a BR receptor and it has been proposed that its kinase activity has an essential role in BR-regulated plant growth and development. Here we report the isolation and molecular characterization of a new allele of bril, bril-301, which shows moderate morphological phenotypes and a reduced response to BRs under normal growth conditions. Sequence analysis identified a two-base alteration from GG to AT, resulting in a conversion of 989G to 9891 in the BRI1 kinase domain. An in vitro assay of kinase activity showed that bril-301 has no detectable autophosphorylation activity or phosphorylation activity towards the BRI1 substrates TTL and BAK1. Furthermore, our results suggest that bril-301, even with extremely impaired kinase activity, still retains partial function in regulating plant growth and development, which raises the question of whether BRI1 kinase activity is essential for BR-mediated growth and development in higher plants.展开更多
Densities of aqueous solutions of eight amino acids, glycine, L-alanine, L-valine, L-isoleucine, L-serine, L-threonine, L-arginine and L-phenylalanine, are measured as a function of amino acid concentration from 293.1...Densities of aqueous solutions of eight amino acids, glycine, L-alanine, L-valine, L-isoleucine, L-serine, L-threonine, L-arginine and L-phenylalanine, are measured as a function of amino acid concentration from 293.15K to 333.15K. These data are used to calculate the apparent molar volume Vφ and infinite dilution apparent molar volume Vφo (partial molar volume). Data of five amino acids are used to correlate partial molar volume Vφo usinggroup contribution method to estimate the contributions of the zwitterionic end groups (NH3+,COO-) and CH2 group, OH group, CNHNHNH2 group and C6H5(phenyl) group of amino acids. The results show that Vφo values for all kinds of groups of amino acids studied increase with increase of temperature except those for CH2 group, which are almost constant within the studied temperature range. Data of other amino acids, L-valine, L-isoleucine and L-threonine, are chosen for comparison with the predicted partial molar volume Vφo using the group additivity parameters obtained. The results confirm that this group additivity method has excellent predictive utility.展开更多
The aim of this research is to study the floatation deinking abilities of black mold enzyme and chemicals in newsprint paper application. In this experiment, the properties of deinked pulp from three different additiv...The aim of this research is to study the floatation deinking abilities of black mold enzyme and chemicals in newsprint paper application. In this experiment, the properties of deinked pulp from three different additives--chemicals, black mold enzyme, and chemicals together with black mold enzyme, are studied. The first part of the experiment was to find the optimal amount of chemicals and the optimal pH through the use of sodium hydroxide and surfactant. As a result, 0.2% of sodium hydroxide and 0.4% of surfactant on oven dried weight at pH 9 was found to be the optimal condition for the deinked pulp to yield the lowest ERIC (effective residual concentration) and the highest brightness. The second part of the experiment was to find the optimal amount of black mold enzyme used in the deinking process. As a result, the optimal condition for deinked pulp to retain the lowest ERIC and the highest brightness was 100 ppm of black mold enzyme and 10 minutes of enzyme reaction time. The third part of experiment was to study the de-inking ability of black mold enzyme and chemicals. Consequently, with 30 min of chemicals reaction time and 60 min of black mold reaction time, the deinked pulp retained low ERIC but higher brightness.展开更多
In the present study to investigate the biochemical mechanisms of therapeutic and prophylactic action of bioflavonoids, carried out a comparative evaluation of antioxidant and antiproteinase properties of certain biof...In the present study to investigate the biochemical mechanisms of therapeutic and prophylactic action of bioflavonoids, carried out a comparative evaluation of antioxidant and antiproteinase properties of certain bioflavonoids standards in vitro. Therapeutic and prophylactic efficacy of individual bioflavonoids as well as herbal medicines with bioflavonoids, was examined at an experimental pathology (toxic hepatitis, dental caries, periodontitis, stomatitis, dysbiosis, diabetes Types 1 and 2, gastric ulcer, osteopenia) in Wistar line rats. Condition of organs and tissues was assessed by biochemical markers of inflammation, antioxidant and antimicrobial defense systems of animals. Research has shown the ability ofbioflavonoids in varying degrees inhibit the formation of superoxide anion radicals and malondialdehyde, recover free radicals, bind ions of Fe2+, inhibiting the activity of proteases, such as leukocyte elastase. Established partially competitive type of trypsin and elastase activity inhibition by bioflavonoids. Was revealed a positive effect of bioflavonoids in experimental pathology on animals. Therapeutic and prophylactic effects of bioflavonoids, in our opinion, are realized through a strong antioxidant and antiprotease properties of these compounds.展开更多
Proteins possess many biological functions.However, they can easily degrade or aggregate, thus losing their bioactivity. Therefore, it is very important to develop materials capable of interacting with proteins and fo...Proteins possess many biological functions.However, they can easily degrade or aggregate, thus losing their bioactivity. Therefore, it is very important to develop materials capable of interacting with proteins and forming nanostructures for protein storage and delivery. In this study,we serendipitously found a novel peptide-based supramolecular protein glue(Nap-GFFYK(γE)2-NH2, compound 1) that could co-assemble with proteins into nanofibers and hydrogels. We found that compound 1 rapidly folded into a β-sheet conformation upon contact with many proteins but not with polymers. Total internal reflection fluorescence microscopy(TIRFM) images clearly show the formation of co-assembled nanofibers by proteins and the peptide. The supramolecular protein glue could improve the dispersion of enzymes(lipase and lysozyme) and therefore enhance their catalytic activity,especially at high temperatures. More importantly, the supramolecular protein glue could co-assemble with two enzymes, glucose oxidase/horseradish peroxidase(GOx/HRP)and GOx/cytochrome c(cyt c), to form nanofibers that significantly enhanced the catalytic activity of tandem enzymatic reactions. We envisioned the great potential of our supramolecular protein glue for protein storage, delivery, and bioactivity manipulation.展开更多
OBJECTIVE: To study the effects of Yizhitongxuan decoction on learning and memory abilities, Gαq/11expression and Na+-K+-ATPenzymeactivityin rat models of Alzheimer's disease(AD) caused by injecting Aβ25-35 into...OBJECTIVE: To study the effects of Yizhitongxuan decoction on learning and memory abilities, Gαq/11expression and Na+-K+-ATPenzymeactivityin rat models of Alzheimer's disease(AD) caused by injecting Aβ25-35 into the hippocampus.METHODS: Ninety male Wistar rats(age ≥10 months)were selected and injected with Aβ25-35 into their hippocampi to establish model animals,which were randomly divided into six groups including a sham-operated group(blank group), a model group, a donepezil HCL group(Western Medicinegroup),and ahigh/general/dilute concentrations of Yizhitongxuan decoction groups(TCMⅠⅡⅢgroup).The Morris watermaze was used to examine the learning and memory abilities of rats in each group by place navigation and spatial probe tests.Then, the rats were sacrificed to collect the hippocampi for biochemical tests, using western blotting to detect the expression of Gαq/11 and an ultramicro Na+-K+-ATP enzyme kit to measure Na+-K+-ATP enzyme activity.RESULTS:Yizhitongxuan decoction improved model rats' learning and memory abilities, and increased the expression of Gαq/11 in the hippocampus and the level of Na+-K+-ATP enzyme activity in braintissue.CONCLUSION: Yizhitongxuan decoction could improve model rats' learning and memory abilities,and had a regulating effect on the expression of Gαq/11and Na+-K+-ATP enzyme activity.展开更多
Adsorption of plasma proteins to nanomaterial surfaces has a great influence on their bio-functionality. However, there is limited understanding of the relationship between the functional proteins in the protein coron...Adsorption of plasma proteins to nanomaterial surfaces has a great influence on their bio-functionality. However, there is limited understanding of the relationship between the functional proteins in the protein corona and the biological identity of the materials. Here we show that the in situ generated thrombin in the protein corona of a Ca-zeolite surface displays a calcium-dependent, unusually high (-3,000 NIH U/mg) procoagulant activity, which is even stable against antithrombin deactivation. Removing the encapsulated Ca^2+ in the zeolites leads to deactivation by antithrombin. Our observations suggest that the thrombin activity can be regulated by the inorganic surface and cations. Most importantly, our discovery indicates the link between the biomolecules in the protein corona and the procoagulant activity of the materials, providing a new molecular basis for the procoagulant mechanism for zeolite hemostatics.展开更多
基金We thank Prof Joanne Chory (The Salk Institute for Biological Studies, USA) for providing the Arabidopsis bril-101 mutant seeds. This work was supported by grants from the National Natural Science Foundation of China (grant numbers: 30070074, 30330040 and 30570161).
文摘Brassinosteroids (BRs) are a major group of plant hormones that regulate plant growth and development. BRI1, a protein localized to the plasma membrane, functions as a BR receptor and it has been proposed that its kinase activity has an essential role in BR-regulated plant growth and development. Here we report the isolation and molecular characterization of a new allele of bril, bril-301, which shows moderate morphological phenotypes and a reduced response to BRs under normal growth conditions. Sequence analysis identified a two-base alteration from GG to AT, resulting in a conversion of 989G to 9891 in the BRI1 kinase domain. An in vitro assay of kinase activity showed that bril-301 has no detectable autophosphorylation activity or phosphorylation activity towards the BRI1 substrates TTL and BAK1. Furthermore, our results suggest that bril-301, even with extremely impaired kinase activity, still retains partial function in regulating plant growth and development, which raises the question of whether BRI1 kinase activity is essential for BR-mediated growth and development in higher plants.
基金the Educational Department Doctor Foundation of China (No. 2000005608).
文摘Densities of aqueous solutions of eight amino acids, glycine, L-alanine, L-valine, L-isoleucine, L-serine, L-threonine, L-arginine and L-phenylalanine, are measured as a function of amino acid concentration from 293.15K to 333.15K. These data are used to calculate the apparent molar volume Vφ and infinite dilution apparent molar volume Vφo (partial molar volume). Data of five amino acids are used to correlate partial molar volume Vφo usinggroup contribution method to estimate the contributions of the zwitterionic end groups (NH3+,COO-) and CH2 group, OH group, CNHNHNH2 group and C6H5(phenyl) group of amino acids. The results show that Vφo values for all kinds of groups of amino acids studied increase with increase of temperature except those for CH2 group, which are almost constant within the studied temperature range. Data of other amino acids, L-valine, L-isoleucine and L-threonine, are chosen for comparison with the predicted partial molar volume Vφo using the group additivity parameters obtained. The results confirm that this group additivity method has excellent predictive utility.
文摘The aim of this research is to study the floatation deinking abilities of black mold enzyme and chemicals in newsprint paper application. In this experiment, the properties of deinked pulp from three different additives--chemicals, black mold enzyme, and chemicals together with black mold enzyme, are studied. The first part of the experiment was to find the optimal amount of chemicals and the optimal pH through the use of sodium hydroxide and surfactant. As a result, 0.2% of sodium hydroxide and 0.4% of surfactant on oven dried weight at pH 9 was found to be the optimal condition for the deinked pulp to yield the lowest ERIC (effective residual concentration) and the highest brightness. The second part of the experiment was to find the optimal amount of black mold enzyme used in the deinking process. As a result, the optimal condition for deinked pulp to retain the lowest ERIC and the highest brightness was 100 ppm of black mold enzyme and 10 minutes of enzyme reaction time. The third part of experiment was to study the de-inking ability of black mold enzyme and chemicals. Consequently, with 30 min of chemicals reaction time and 60 min of black mold reaction time, the deinked pulp retained low ERIC but higher brightness.
文摘In the present study to investigate the biochemical mechanisms of therapeutic and prophylactic action of bioflavonoids, carried out a comparative evaluation of antioxidant and antiproteinase properties of certain bioflavonoids standards in vitro. Therapeutic and prophylactic efficacy of individual bioflavonoids as well as herbal medicines with bioflavonoids, was examined at an experimental pathology (toxic hepatitis, dental caries, periodontitis, stomatitis, dysbiosis, diabetes Types 1 and 2, gastric ulcer, osteopenia) in Wistar line rats. Condition of organs and tissues was assessed by biochemical markers of inflammation, antioxidant and antimicrobial defense systems of animals. Research has shown the ability ofbioflavonoids in varying degrees inhibit the formation of superoxide anion radicals and malondialdehyde, recover free radicals, bind ions of Fe2+, inhibiting the activity of proteases, such as leukocyte elastase. Established partially competitive type of trypsin and elastase activity inhibition by bioflavonoids. Was revealed a positive effect of bioflavonoids in experimental pathology on animals. Therapeutic and prophylactic effects of bioflavonoids, in our opinion, are realized through a strong antioxidant and antiprotease properties of these compounds.
基金supported by the National Science Fund for Distinguished Young Scholars(31825012)the National Key Research and Development Program of China(2017YFC1103502)+4 种基金the National Natural Science Foundation of China(NSFC,51773097,51873156 and 21876116)Tianjin Science Fund for Distinguished Young Scholars(17JCJQJC44900)the National Program for Support of Topnotch Young Professionalsthe Fundamental Research Funds for the Central Universitiesthe Young Elite Scientists Sponsorship Program by Tianjin(TJSQNTJ-2017-16)
文摘Proteins possess many biological functions.However, they can easily degrade or aggregate, thus losing their bioactivity. Therefore, it is very important to develop materials capable of interacting with proteins and forming nanostructures for protein storage and delivery. In this study,we serendipitously found a novel peptide-based supramolecular protein glue(Nap-GFFYK(γE)2-NH2, compound 1) that could co-assemble with proteins into nanofibers and hydrogels. We found that compound 1 rapidly folded into a β-sheet conformation upon contact with many proteins but not with polymers. Total internal reflection fluorescence microscopy(TIRFM) images clearly show the formation of co-assembled nanofibers by proteins and the peptide. The supramolecular protein glue could improve the dispersion of enzymes(lipase and lysozyme) and therefore enhance their catalytic activity,especially at high temperatures. More importantly, the supramolecular protein glue could co-assemble with two enzymes, glucose oxidase/horseradish peroxidase(GOx/HRP)and GOx/cytochrome c(cyt c), to form nanofibers that significantly enhanced the catalytic activity of tandem enzymatic reactions. We envisioned the great potential of our supramolecular protein glue for protein storage, delivery, and bioactivity manipulation.
基金Supported by the Project of Science and Technology in Shandong Universities of Shandong Provincial Education Department(No.J11LF09)
文摘OBJECTIVE: To study the effects of Yizhitongxuan decoction on learning and memory abilities, Gαq/11expression and Na+-K+-ATPenzymeactivityin rat models of Alzheimer's disease(AD) caused by injecting Aβ25-35 into the hippocampus.METHODS: Ninety male Wistar rats(age ≥10 months)were selected and injected with Aβ25-35 into their hippocampi to establish model animals,which were randomly divided into six groups including a sham-operated group(blank group), a model group, a donepezil HCL group(Western Medicinegroup),and ahigh/general/dilute concentrations of Yizhitongxuan decoction groups(TCMⅠⅡⅢgroup).The Morris watermaze was used to examine the learning and memory abilities of rats in each group by place navigation and spatial probe tests.Then, the rats were sacrificed to collect the hippocampi for biochemical tests, using western blotting to detect the expression of Gαq/11 and an ultramicro Na+-K+-ATP enzyme kit to measure Na+-K+-ATP enzyme activity.RESULTS:Yizhitongxuan decoction improved model rats' learning and memory abilities, and increased the expression of Gαq/11 in the hippocampus and the level of Na+-K+-ATP enzyme activity in braintissue.CONCLUSION: Yizhitongxuan decoction could improve model rats' learning and memory abilities,and had a regulating effect on the expression of Gαq/11and Na+-K+-ATP enzyme activity.
基金We are grateful to X. D. Xi, T. Wu, H. Hu, and Z. Z. Kang for helpful discussions, and P. Liu for technical help with western blot analysis. This work was supported by the National Natural Science Foundation of China (Nos. 20873122, 21222307, and 21003106), Fok Ying Tung Education Foundation (No. 131015), the Science & Technology Department of Zhejiang Province (Nos. 2008C11125 and R12B030002), and the Fundamental Research Funds for the Central Universities (No. 2014XZZX003-02).
文摘Adsorption of plasma proteins to nanomaterial surfaces has a great influence on their bio-functionality. However, there is limited understanding of the relationship between the functional proteins in the protein corona and the biological identity of the materials. Here we show that the in situ generated thrombin in the protein corona of a Ca-zeolite surface displays a calcium-dependent, unusually high (-3,000 NIH U/mg) procoagulant activity, which is even stable against antithrombin deactivation. Removing the encapsulated Ca^2+ in the zeolites leads to deactivation by antithrombin. Our observations suggest that the thrombin activity can be regulated by the inorganic surface and cations. Most importantly, our discovery indicates the link between the biomolecules in the protein corona and the procoagulant activity of the materials, providing a new molecular basis for the procoagulant mechanism for zeolite hemostatics.