In order to improve the pectin-degrading efficiency in wet processing of Arabica coffee in Yunnan, Box-Behnken design and single factor experiment were used to optimize the fermentation conditions of five pectinolytic...In order to improve the pectin-degrading efficiency in wet processing of Arabica coffee in Yunnan, Box-Behnken design and single factor experiment were used to optimize the fermentation conditions of five pectinolytic Wickerhamomyces anomalus strains from the fermentation broth of Arabica coffee in Baoshan, Yunnan during wet processing with pectase activity as an indicator. The results showed that the five strains all synthesized pectin lyase(PL), polygalacturonase(PG), and pectin methylesterase(PM).Among them, strain CAP5 had strong ability to produce PG and PL,while strain CAP4 secreted a large amount of PM. Under optimized conditions, the activity of PG, PL, and PM of the five strains came in at 250.17~411.20 U/mL, 12.98~16.55 U/mL, and 208.52~322.83 U/mL,respectively. The four factors of nitrogen source concentration,fermentation time, Mn2+ concentration, and pH value were optimized and the optimal pectinase-producing fermentation conditions for five strains were as follows: peptone 2.2 g/L, fermentation time 30 h, Mn2+ 1.5 mmol/L, and pH 4.3. After fermentation under the optimized conditions, the maximum PG activity of CAP5 amounted to 411.20 U/mL, 114.03% higher than that before optimization.Meanwhile, the PG activity of strains CAP3, CAP4, CAP8, and CAP10 increased by 86.74%, 114.55%, 65.79%, and 66.07%,respectively, and the activity of PL and PM of the five strains rose 150.35%~218.56% and 341.07%~418.52%, respectively. These findings suggested that W. anomalus strains could be used as coffee starter and had great potential for the lysis of pectin.展开更多
Factorial design and response surface techniques were used to design and optimize increasing P450 BM-3 expression in E, coll. Operational conditions for maximum production were determined with twelve parameters under ...Factorial design and response surface techniques were used to design and optimize increasing P450 BM-3 expression in E, coll. Operational conditions for maximum production were determined with twelve parameters under consideration: the concentration of FeCl3, induction at OD578 (optical density measured at 578 nm), induction time and inoculum concentration. Initially, Plackett-Burman (PB) design was used to evaluate the process variables relevant in relation to P450 BM-3 production. Four statistically significant parameters for response were selected and utilized in order to optimize the process. With the 416C model of hybrid design, response surfaces were generated, and P450 BM-3 production was improved to 57.90×10^-3 U/ml by the best combinations of the physicochemical parameters at optimum levels of 0,12 mg/L FeCl3, inoculum concentration of 2.10%, induction at OD578 equal to 1.07, and with 6.05 h of induction.展开更多
The two major challenges in industrial enzymatic catalysis are the limited number of chemical reaction types that are catalyzed by enzymes and the instability of enzymes under harsh conditions in industrial catalysis....The two major challenges in industrial enzymatic catalysis are the limited number of chemical reaction types that are catalyzed by enzymes and the instability of enzymes under harsh conditions in industrial catalysis.Expanding enzyme catalysis to a larger substrate scope and greater variety of chemical reactions and tuning the microenvironment surrounding enzyme molecules to achieve high enzyme performance are urgently needed.In this account,we focus on our efforts using the de novo approach to synthesis hybrid enzyme catalysts that can address these two challenges and the structure-function relationship is discussed to reveal the principles of designing hybrid enzyme catalysts.We hope that this account will promote further efforts toward fundamental research and wide applications of designed enzyme hybrid catalysts for expanding biocatalysis.展开更多
In the present study, ultrasonic extraction technique (UET) is used to improve the yield of polysaccharides from Lami- naria japonica (LJPs). And their antioxidative as well as glycosidase inhibitory activities ar...In the present study, ultrasonic extraction technique (UET) is used to improve the yield of polysaccharides from Lami- naria japonica (LJPs). And their antioxidative as well as glycosidase inhibitory activities are investigated. Box-Behnken design (BBD) combined with response surface methodology (RSM) is applied to optimize ultrasonic extraction for polysaccharides. The optimized conditions are obtained as extraction time at 54 min, ultrasonic power at 1050 W, extraction temperature at 80℃ and ratio of material to solvent at 1:50 (g mL-1). Under these optimal ultrasonic extraction conditions, an actual experimental yield (5.75% + 0.3%) is close to the predicted result (5.67%) with no significant difference (P〉0.05). Vitro antioxidative and glycosidase inhibitory activities tests indicate that the crude polysaccharides (LJP) and two major ethanol precipitated fractions (LJP1 and LJP2) are in a concentration-dependent manner. LJP2 (30%-60% ethanol precipitated polysaccharides) possesses the strongest α-glucosidase in- hibitory activity and moderate scavenging activity against hydroxyl radicals (66.09% ±2.19%, 3.0 mg mL-l). Also, the inhibitory activity against a-glucosidase (59.08% ± 3.79%, 5.0 mg mL-1) is close to that of acarbose (63.99% ± 3.27%, 5.0 mg mL-l). LJP 1 (30% ethanol precipitated polysaccharides) exhibits the strongest scavenging activity against hydroxyl radicals (99.80%q-0.00%, 3.0mg mL-1) and moderate a-glucosidase inhibitory activity (47.76%± 1.92%, 5.0 mgmL-1). LJP shows the most remarkable DPPH scav- enging activity (66.20%±0.11%, 5.0mgmL-1) but weakest a-glucosidase inhibitory activity (37.77%±1.30%, 5.0mgmL-1). How- ever, all these LJPs exert weak inhibitory effects against a-amylase. These results show that UET is an effective method for extract- ing bioactive polysaccharides from seaweed materials. LJP 1 and LJP2 can be developed as a potential ingredient in hypoglycemic agents or functional food for the management of diabetes. This study provides scientific evidence and advances in the preparation technology and a hypoglycemic activities evaluation method for seaweed polysaccharides, especially glycosidase inhibition in com- bination with an antioxidative activity evaluation method.展开更多
With the aim of to valorise red grape pomace and to reduce its environmental impact, the production of enzymatic preparations appear as an interesting choice. Statistical experimental Plackett-Burman designs were appl...With the aim of to valorise red grape pomace and to reduce its environmental impact, the production of enzymatic preparations appear as an interesting choice. Statistical experimental Plackett-Burman designs were applied for the selection of relevant medium components and culture conditions for cellulase, xylanase, polygalacturonase and tannase production by Aspergillus awamori, in solid-state fermentation on red grape pomace. Ten variables were tested: initial moisture content (IMC), particle size (PS), temperature, initial pH, time of cultivation, mixing (Mx), and additions of: fructose, tannic acid, sodium phosphate, and ammonium sulphate (ASA). Results indicate that the production of each enzyme was affected in a distinct way by the different variables. Also, for each of the enzyme activities considered, IMC must be carefully controlled, and optimized above 65%; PS and Mx, must not be taken into account and ASA must be discarded. The other variables studied, must be selected according to the enzyme activity that will be favored.展开更多
文摘In order to improve the pectin-degrading efficiency in wet processing of Arabica coffee in Yunnan, Box-Behnken design and single factor experiment were used to optimize the fermentation conditions of five pectinolytic Wickerhamomyces anomalus strains from the fermentation broth of Arabica coffee in Baoshan, Yunnan during wet processing with pectase activity as an indicator. The results showed that the five strains all synthesized pectin lyase(PL), polygalacturonase(PG), and pectin methylesterase(PM).Among them, strain CAP5 had strong ability to produce PG and PL,while strain CAP4 secreted a large amount of PM. Under optimized conditions, the activity of PG, PL, and PM of the five strains came in at 250.17~411.20 U/mL, 12.98~16.55 U/mL, and 208.52~322.83 U/mL,respectively. The four factors of nitrogen source concentration,fermentation time, Mn2+ concentration, and pH value were optimized and the optimal pectinase-producing fermentation conditions for five strains were as follows: peptone 2.2 g/L, fermentation time 30 h, Mn2+ 1.5 mmol/L, and pH 4.3. After fermentation under the optimized conditions, the maximum PG activity of CAP5 amounted to 411.20 U/mL, 114.03% higher than that before optimization.Meanwhile, the PG activity of strains CAP3, CAP4, CAP8, and CAP10 increased by 86.74%, 114.55%, 65.79%, and 66.07%,respectively, and the activity of PL and PM of the five strains rose 150.35%~218.56% and 341.07%~418.52%, respectively. These findings suggested that W. anomalus strains could be used as coffee starter and had great potential for the lysis of pectin.
基金Project (No. 30570411) supported by the National Natural ScienceFoundation of China
文摘Factorial design and response surface techniques were used to design and optimize increasing P450 BM-3 expression in E, coll. Operational conditions for maximum production were determined with twelve parameters under consideration: the concentration of FeCl3, induction at OD578 (optical density measured at 578 nm), induction time and inoculum concentration. Initially, Plackett-Burman (PB) design was used to evaluate the process variables relevant in relation to P450 BM-3 production. Four statistically significant parameters for response were selected and utilized in order to optimize the process. With the 416C model of hybrid design, response surfaces were generated, and P450 BM-3 production was improved to 57.90×10^-3 U/ml by the best combinations of the physicochemical parameters at optimum levels of 0,12 mg/L FeCl3, inoculum concentration of 2.10%, induction at OD578 equal to 1.07, and with 6.05 h of induction.
文摘The two major challenges in industrial enzymatic catalysis are the limited number of chemical reaction types that are catalyzed by enzymes and the instability of enzymes under harsh conditions in industrial catalysis.Expanding enzyme catalysis to a larger substrate scope and greater variety of chemical reactions and tuning the microenvironment surrounding enzyme molecules to achieve high enzyme performance are urgently needed.In this account,we focus on our efforts using the de novo approach to synthesis hybrid enzyme catalysts that can address these two challenges and the structure-function relationship is discussed to reveal the principles of designing hybrid enzyme catalysts.We hope that this account will promote further efforts toward fundamental research and wide applications of designed enzyme hybrid catalysts for expanding biocatalysis.
基金supported by the Project of National Key Technology Research and Development Program for the 12th Five-year Plan(No.2012BAD33B10)Public Science and Technology Research Funds Projects of Ocean(No.201305018-2)+4 种基金the Innovative Development of Marine Economy Regional Demonstration Projects(Nos.SZHY2012-B01-004,GD2013-B03-001)the National Scien-ce Foundation for Young Scientists of China(No.31101271)the Natural Science Foundation of Guangdong Province(Nos.2014A030310338,2014A030310351)the Comprehensive Strategic Cooperation Programs between the Guangdong Province and Chinese Academy of Sciences(No.2011B090300057)the Frontier Science Program for Young Scientists of South China Sea Institute of Oceanology,Chinese Academy of Science(No.SQ 201017)
文摘In the present study, ultrasonic extraction technique (UET) is used to improve the yield of polysaccharides from Lami- naria japonica (LJPs). And their antioxidative as well as glycosidase inhibitory activities are investigated. Box-Behnken design (BBD) combined with response surface methodology (RSM) is applied to optimize ultrasonic extraction for polysaccharides. The optimized conditions are obtained as extraction time at 54 min, ultrasonic power at 1050 W, extraction temperature at 80℃ and ratio of material to solvent at 1:50 (g mL-1). Under these optimal ultrasonic extraction conditions, an actual experimental yield (5.75% + 0.3%) is close to the predicted result (5.67%) with no significant difference (P〉0.05). Vitro antioxidative and glycosidase inhibitory activities tests indicate that the crude polysaccharides (LJP) and two major ethanol precipitated fractions (LJP1 and LJP2) are in a concentration-dependent manner. LJP2 (30%-60% ethanol precipitated polysaccharides) possesses the strongest α-glucosidase in- hibitory activity and moderate scavenging activity against hydroxyl radicals (66.09% ±2.19%, 3.0 mg mL-l). Also, the inhibitory activity against a-glucosidase (59.08% ± 3.79%, 5.0 mg mL-1) is close to that of acarbose (63.99% ± 3.27%, 5.0 mg mL-l). LJP 1 (30% ethanol precipitated polysaccharides) exhibits the strongest scavenging activity against hydroxyl radicals (99.80%q-0.00%, 3.0mg mL-1) and moderate a-glucosidase inhibitory activity (47.76%± 1.92%, 5.0 mgmL-1). LJP shows the most remarkable DPPH scav- enging activity (66.20%±0.11%, 5.0mgmL-1) but weakest a-glucosidase inhibitory activity (37.77%±1.30%, 5.0mgmL-1). How- ever, all these LJPs exert weak inhibitory effects against a-amylase. These results show that UET is an effective method for extract- ing bioactive polysaccharides from seaweed materials. LJP 1 and LJP2 can be developed as a potential ingredient in hypoglycemic agents or functional food for the management of diabetes. This study provides scientific evidence and advances in the preparation technology and a hypoglycemic activities evaluation method for seaweed polysaccharides, especially glycosidase inhibition in com- bination with an antioxidative activity evaluation method.
文摘With the aim of to valorise red grape pomace and to reduce its environmental impact, the production of enzymatic preparations appear as an interesting choice. Statistical experimental Plackett-Burman designs were applied for the selection of relevant medium components and culture conditions for cellulase, xylanase, polygalacturonase and tannase production by Aspergillus awamori, in solid-state fermentation on red grape pomace. Ten variables were tested: initial moisture content (IMC), particle size (PS), temperature, initial pH, time of cultivation, mixing (Mx), and additions of: fructose, tannic acid, sodium phosphate, and ammonium sulphate (ASA). Results indicate that the production of each enzyme was affected in a distinct way by the different variables. Also, for each of the enzyme activities considered, IMC must be carefully controlled, and optimized above 65%; PS and Mx, must not be taken into account and ASA must be discarded. The other variables studied, must be selected according to the enzyme activity that will be favored.