Catalytic activity of activated carbon supported tungstosilicic acidin synthesizing 2-methyl-2-ethoxycarbonylmethyl- 1,3-dioxolane, 2,4-dimethyl-2-ethoxycarbonylmethyl-1,3-dioxolane, cyclohexanone ethylene ketal, cycl...Catalytic activity of activated carbon supported tungstosilicic acidin synthesizing 2-methyl-2-ethoxycarbonylmethyl- 1,3-dioxolane, 2,4-dimethyl-2-ethoxycarbonylmethyl-1,3-dioxolane, cyclohexanone ethylene ketal, cyclohexanone 1,2-propa- nediol ketal, butanone ethylene ketal, butanone 1,2-propanediol ketal, 2-phenyl-1,3-dioxolane, 4-methyl-2-phenyl-1,3-dioxolane, 2-propyl-1,3-dioxolane, 4-methyl-2-propyl-1,3-dioxolane was reported. It has been demonstrated that activated carbon supported tungstosilicic acid is an excellent catalyst. Various factors involved in these reactions were investigated. The optimum conditions found were: molar ratio of aldehyde/ketone to glycol is 1/1.5, mass ratio of the catalyst used to the reactants is 1.0%, and reaction time is 1.0 h. Under these conditions, the yield of 2-methyl-2-ethoxycarbonylmethyl-1,3-dioxolane is 61.5%, of 2,4-dimethyl- 2-ethoxycarbonylmethyl-1,3-dioxolane is 69.1%, of cyclohexanone ethylene ketal is 74.6%, of cyclohexanone 1,2-propanediol ketal is 80.1%, of butanone ethylene ketal is 69.5%, of butanone 1,2-propanediol ketal is 78.5%, of 2-phenyl-1,3-dioxolane is 56.7%, of 4-methyl-2-phenyl-1,3-dioxolane is 86.2%, of 2-propyl-1,3-dioxolane is 87.5%, of 4-methyl-2-propyl-1,3-dioxolane is 87.9%.展开更多
High performance enzymatic synthesis of oleyl palmitate, a wax ester was carried out by lipase-catalyzed esterification of palmitic acid and oleyl alcohol. Response surface methodology (RSM) based on 5-level, 3-vari...High performance enzymatic synthesis of oleyl palmitate, a wax ester was carried out by lipase-catalyzed esterification of palmitic acid and oleyl alcohol. Response surface methodology (RSM) based on 5-level, 3-variable of centre composite rotatable design (CCRD) was used to evaluate the interactive effects of synthesis, of temperature (40-60 ℃); amount of enzyme (0.1-0.4 g) and substrate molar ratio of oleyl alcohol to palmitic acid (1:1-4:1) on the percentage yield of wax ester. All reactions were fixed at 1 hour of reaction time. The optimum condition obtained from RSM for the reactions were temperature of 57.9 ℃, enzyme amount of 0.26 g and molar ratio of substrates of 2.92. The actual experimental yield was 91.2% under the optimum condition, which compared well with the maximum predicted value of 92.0%. Comparison of predicted and experimental values reveal good correspondence between them, implying that empirical models derived from RSM can be used to adequately describe the relationship between the factors and response in the synthesis of oleyl palmitate.展开更多
基金Project supported by the Natural Science Foundation of HubeiProvince Education Committee (No. 2004D007) and the NationalNatural Science Foundation of China (No. 20471044)
文摘Catalytic activity of activated carbon supported tungstosilicic acidin synthesizing 2-methyl-2-ethoxycarbonylmethyl- 1,3-dioxolane, 2,4-dimethyl-2-ethoxycarbonylmethyl-1,3-dioxolane, cyclohexanone ethylene ketal, cyclohexanone 1,2-propa- nediol ketal, butanone ethylene ketal, butanone 1,2-propanediol ketal, 2-phenyl-1,3-dioxolane, 4-methyl-2-phenyl-1,3-dioxolane, 2-propyl-1,3-dioxolane, 4-methyl-2-propyl-1,3-dioxolane was reported. It has been demonstrated that activated carbon supported tungstosilicic acid is an excellent catalyst. Various factors involved in these reactions were investigated. The optimum conditions found were: molar ratio of aldehyde/ketone to glycol is 1/1.5, mass ratio of the catalyst used to the reactants is 1.0%, and reaction time is 1.0 h. Under these conditions, the yield of 2-methyl-2-ethoxycarbonylmethyl-1,3-dioxolane is 61.5%, of 2,4-dimethyl- 2-ethoxycarbonylmethyl-1,3-dioxolane is 69.1%, of cyclohexanone ethylene ketal is 74.6%, of cyclohexanone 1,2-propanediol ketal is 80.1%, of butanone ethylene ketal is 69.5%, of butanone 1,2-propanediol ketal is 78.5%, of 2-phenyl-1,3-dioxolane is 56.7%, of 4-methyl-2-phenyl-1,3-dioxolane is 86.2%, of 2-propyl-1,3-dioxolane is 87.5%, of 4-methyl-2-propyl-1,3-dioxolane is 87.9%.
文摘High performance enzymatic synthesis of oleyl palmitate, a wax ester was carried out by lipase-catalyzed esterification of palmitic acid and oleyl alcohol. Response surface methodology (RSM) based on 5-level, 3-variable of centre composite rotatable design (CCRD) was used to evaluate the interactive effects of synthesis, of temperature (40-60 ℃); amount of enzyme (0.1-0.4 g) and substrate molar ratio of oleyl alcohol to palmitic acid (1:1-4:1) on the percentage yield of wax ester. All reactions were fixed at 1 hour of reaction time. The optimum condition obtained from RSM for the reactions were temperature of 57.9 ℃, enzyme amount of 0.26 g and molar ratio of substrates of 2.92. The actual experimental yield was 91.2% under the optimum condition, which compared well with the maximum predicted value of 92.0%. Comparison of predicted and experimental values reveal good correspondence between them, implying that empirical models derived from RSM can be used to adequately describe the relationship between the factors and response in the synthesis of oleyl palmitate.