Sulfate adsorption by poly(m-phenylenediamine)s(PmPDs) with various oxidation states synthesized through chemically oxidative polymerization was investigated.Series of sorption experiments were conducted,and the a...Sulfate adsorption by poly(m-phenylenediamine)s(PmPDs) with various oxidation states synthesized through chemically oxidative polymerization was investigated.Series of sorption experiments were conducted,and the adsorption mechanism and the relationship between oxidation state and adsorption performance were studied with the characterization of Fourier transform infrared spectroscopy(FTIR),X-ray photoelectron spectroscopy(XPS),pH tracking and energy calculation.The results show that the adsorption performance in acidic solution is improved with the decrease of oxidation state of poly(m-phenylenediamine)(PmPD).The rate constant is as high as 425.5 mg/(g·min) in the short equilibrium time of 30 min.The estimated highest adsorptivity of sulfate ions is 95.1%.According to the Langmuir equation,the adsorbance is 108.5 mg/g.The sulfate desorption efficiency is about 95% and the accumulative adsorbance is up to 487.95 mg/g in 5 cycles.展开更多
To compare the transformation effects of two different forms (cDNA in monocotyledonous plant Echinochloa crusgalli, DNA in monocotyledonous plant Zea mays) of phosphoenolpyruvate carboxylase (PEPC) gene (Ppc) on...To compare the transformation effects of two different forms (cDNA in monocotyledonous plant Echinochloa crusgalli, DNA in monocotyledonous plant Zea mays) of phosphoenolpyruvate carboxylase (PEPC) gene (Ppc) on the growth of transgenic dicotyledonous plant, Agrobacterium-mediated transformation of Ppc genes into Nicotiana tabacum were carried out. Transgenic leaf plates and differentiated seedling leaves were verified by GUS histochemistry, PCR, and RT-PCR. Results showed that transgenic N. tabacum with Ppc-cDNA of E. crusgalli had relatively strong differentiation ability. However, N. tabacum after transformation of complete DNA sequence of Ppc genes in Z mays had relatively poor ability of growth. The differentiated green seedlings had the phenomenon of yellowing; and photosynthesis ability of leaves was poor. This might be caused by the misidentification and wrong splicing in transcription. This indicated that the expression rate of monocotyledonous complete DNA might be reduced in the monocotyledonous cells with relatively far genetic distances. Detection results of showed that Pn in most transgenic N. tabacum with Ppc-cDNA of E. crusgalli was was higher than that in control, which preliminarily proved that PEPC of monocotyledonous plant E. crusgalli had certain regulatory effects on photosynthesis of N. tabacum.展开更多
We studied the effect of pH (pH 5, 6, 7 and 8) on the hatching percentage, survival and reproduction of Artemia strains in Bohai Bay salt ponds. Strains included parthenogenetic Artemia from Bohai Bay (BHB), Artem...We studied the effect of pH (pH 5, 6, 7 and 8) on the hatching percentage, survival and reproduction of Artemia strains in Bohai Bay salt ponds. Strains included parthenogenetic Artemia from Bohai Bay (BHB), Artemiafranciscana from San Francisco Bay, and A. franciscana artificially produced in salt ponds in Vietnam. The latter was included as a potential inoculum for biological management of salt ponds. The hatching percentage of cysts after 24 h and the survival rate of the tested Artemia strains were significantly reduced when exposed to a culture medium at pH 5 for 18 d (P〈0.05). The tolerance of Artemia to 48 h acid exposure varied with developmental stage, increasing in the following order: juvenile, nauplii, pre-adult, with maximum tolerance in adults. All strains of Artemia tested could not reproduce at pH 5. At pH levels from pH 6-8, a higher pH generally resulted in a shorter brood interval and enhanced ovoviviparity. Hence, we suggest that brine acidification has a negative impact on Artemia populations in the Bohai Bay saltworks. Inoculation of Artemia with either local parthenogenetic Artemia or exotic A. franeiscana should be feasible at pH 7-8.展开更多
A novel catalyst for CO2 electroreduction based on nanostructured SnO2 was synthesized using a facile hydrothermal self-assembly method. The electrochemical activity showed that the catalyst gave outstanding catalytic...A novel catalyst for CO2 electroreduction based on nanostructured SnO2 was synthesized using a facile hydrothermal self-assembly method. The electrochemical activity showed that the catalyst gave outstanding catalytic activity and selectivity in CO2 electroreduction. The catalytic activity and formate selectivity depended strongly on the electrolyte conditions. A high faradaic efficiency, i.e., 56%, was achieved for formate formation in KHCO3 (0.5 mol/L). This is attributed to control of formate production by mass and charge transfer processes. Electrolysis experiments using SnO2-50/GDE (an SnOz-based gas-diffusion electrode, where 50 indicates the 50% ethanol content of the electrolyte) as the catalyst, showed that the electrolyte pH also affected CO2 reduction. The optimum electrolyte pH for obtaining a high faradaic efficiency for formate production was 8.3. This is mainly because a neutral or mildly alkaline environment maintains the oxide stability. The fara- daic efficiency for formate production declined with time. X-ray photoelectron spectroscopy showed that this is the result of deposition of trace amounts of fluoride ions on the SnO2-50/GDE surface, which hinders reduction of CO2 to formate.展开更多
The cerium conversion film was applied to improving the corrosion resistance of Mg-Gd-Y-Zr magnesium alloy. The film was electrodeposited on the surface of the Mg-RE alloy in cerium nitrate solution. The compositions ...The cerium conversion film was applied to improving the corrosion resistance of Mg-Gd-Y-Zr magnesium alloy. The film was electrodeposited on the surface of the Mg-RE alloy in cerium nitrate solution. The compositions and morphologies were analyzed by X-ray diffraction(XRD), scanning election microscopy (SEM). The corrosion behaviors of the film were investigated electrochemical impedance spectroscopy (EIS), potentiodynamic polarization tests and immersion tests. The results show that the optimum parameters for electrochemical deposition are as follows: pH 10.0, time 30 min, 50 mmol/L Na2CO3 and temperature 25 ℃ by the designed experiments according to the orthogonal table L(9, 34). The corrosion protection efficiency is dependent on the deposition parameters. The cerium conversion film shows better corrosion protection behavior than chromate conversion film on Mg-Gd-Y-Zr magnesium alloy.展开更多
To determine the replacement of fish oil with vegetable oils in the diet of juvenile Jade perch Scortum barcoo, four feeds with each a different oil (fish, sunflower, linseed and a mixture of 75% canola and 25% linse...To determine the replacement of fish oil with vegetable oils in the diet of juvenile Jade perch Scortum barcoo, four feeds with each a different oil (fish, sunflower, linseed and a mixture of 75% canola and 25% linseed oil), were fed to Jade perch reared in recirculating aquaculture systems (RAS). The trial lasted for 10 weeks and the fatty acid (FA) profile of both feed and fish muscle tissue were examined. There was no difference in growth, feed conversion rate (FCR) and mortality. The fish grew from 10 g to 110 g with a FCR of 1.25 and 0 mortality. The FA profile of the fish muscle tissue reflected the FA profile of the feed. The flesh of the fish that were fed the linseed oil diet, were extremely high in omega-3 (n-3) polyunsaturated FA (n-3 PUFA) with 3.75% of wet weight. This is one of the highest concentrations of n-3 PUFA ever recorded in fish flesh. In a finishing feeding test, the remaining vegetable oil fed fish were fed the fish oil diet for another two weeks immediately after the 10 weeks trial, to check for a possible recovery of n-3 highly unsaturated fatty acids (HUFA). The wash out rate of FA towards n-3 HUFA in the muscle tissue was about 25% over this two weeks period.展开更多
基金Project(50925417) supported by China National Funds for Distinguished Young ScientistsProject(50830301) supported by the National Natural Science Foundation of China+1 种基金Project(2009ZX07212-001-01) supported by Major Science and Technology Program for Water Pollution Control and Treatment of ChinaProject(2011) supported by Hunan Nonferrous Fundamental Research Fund
文摘Sulfate adsorption by poly(m-phenylenediamine)s(PmPDs) with various oxidation states synthesized through chemically oxidative polymerization was investigated.Series of sorption experiments were conducted,and the adsorption mechanism and the relationship between oxidation state and adsorption performance were studied with the characterization of Fourier transform infrared spectroscopy(FTIR),X-ray photoelectron spectroscopy(XPS),pH tracking and energy calculation.The results show that the adsorption performance in acidic solution is improved with the decrease of oxidation state of poly(m-phenylenediamine)(PmPD).The rate constant is as high as 425.5 mg/(g·min) in the short equilibrium time of 30 min.The estimated highest adsorptivity of sulfate ions is 95.1%.According to the Langmuir equation,the adsorbance is 108.5 mg/g.The sulfate desorption efficiency is about 95% and the accumulative adsorbance is up to 487.95 mg/g in 5 cycles.
基金Supported by the Innovation Project of Chinese Academy of Agricultural Sciences~~
文摘To compare the transformation effects of two different forms (cDNA in monocotyledonous plant Echinochloa crusgalli, DNA in monocotyledonous plant Zea mays) of phosphoenolpyruvate carboxylase (PEPC) gene (Ppc) on the growth of transgenic dicotyledonous plant, Agrobacterium-mediated transformation of Ppc genes into Nicotiana tabacum were carried out. Transgenic leaf plates and differentiated seedling leaves were verified by GUS histochemistry, PCR, and RT-PCR. Results showed that transgenic N. tabacum with Ppc-cDNA of E. crusgalli had relatively strong differentiation ability. However, N. tabacum after transformation of complete DNA sequence of Ppc genes in Z mays had relatively poor ability of growth. The differentiated green seedlings had the phenomenon of yellowing; and photosynthesis ability of leaves was poor. This might be caused by the misidentification and wrong splicing in transcription. This indicated that the expression rate of monocotyledonous complete DNA might be reduced in the monocotyledonous cells with relatively far genetic distances. Detection results of showed that Pn in most transgenic N. tabacum with Ppc-cDNA of E. crusgalli was was higher than that in control, which preliminarily proved that PEPC of monocotyledonous plant E. crusgalli had certain regulatory effects on photosynthesis of N. tabacum.
基金Supported by the International Cooperation Research Program of the Ministry of Science&Technology of China(No.2010DFA32300)the Pilot Project for International Cooperation"Aquaculture in Hebei and Shandong Provinces"funded by the Province of East-Flanders,Belgiumthe Nature Science Foundation of Tianjin(No.13JCZDJC28700)
文摘We studied the effect of pH (pH 5, 6, 7 and 8) on the hatching percentage, survival and reproduction of Artemia strains in Bohai Bay salt ponds. Strains included parthenogenetic Artemia from Bohai Bay (BHB), Artemiafranciscana from San Francisco Bay, and A. franciscana artificially produced in salt ponds in Vietnam. The latter was included as a potential inoculum for biological management of salt ponds. The hatching percentage of cysts after 24 h and the survival rate of the tested Artemia strains were significantly reduced when exposed to a culture medium at pH 5 for 18 d (P〈0.05). The tolerance of Artemia to 48 h acid exposure varied with developmental stage, increasing in the following order: juvenile, nauplii, pre-adult, with maximum tolerance in adults. All strains of Artemia tested could not reproduce at pH 5. At pH levels from pH 6-8, a higher pH generally resulted in a shorter brood interval and enhanced ovoviviparity. Hence, we suggest that brine acidification has a negative impact on Artemia populations in the Bohai Bay saltworks. Inoculation of Artemia with either local parthenogenetic Artemia or exotic A. franeiscana should be feasible at pH 7-8.
基金supported by the Innovation Program of the Shanghai Municipal Education Commission(14ZZ074)the International Academic Coop-eration and Exchange Program of Shanghai Science and Technology Committee(14520721900)+1 种基金Graduate Innovation Fund of Donghua University(15D311304)the College of Environmental Science and Engineering,State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry,Donghua University.All the financial supports are gratefully acknowledged~~
文摘A novel catalyst for CO2 electroreduction based on nanostructured SnO2 was synthesized using a facile hydrothermal self-assembly method. The electrochemical activity showed that the catalyst gave outstanding catalytic activity and selectivity in CO2 electroreduction. The catalytic activity and formate selectivity depended strongly on the electrolyte conditions. A high faradaic efficiency, i.e., 56%, was achieved for formate formation in KHCO3 (0.5 mol/L). This is attributed to control of formate production by mass and charge transfer processes. Electrolysis experiments using SnO2-50/GDE (an SnOz-based gas-diffusion electrode, where 50 indicates the 50% ethanol content of the electrolyte) as the catalyst, showed that the electrolyte pH also affected CO2 reduction. The optimum electrolyte pH for obtaining a high faradaic efficiency for formate production was 8.3. This is mainly because a neutral or mildly alkaline environment maintains the oxide stability. The fara- daic efficiency for formate production declined with time. X-ray photoelectron spectroscopy showed that this is the result of deposition of trace amounts of fluoride ions on the SnO2-50/GDE surface, which hinders reduction of CO2 to formate.
基金Project (5133001E) supported by the Major State Basic Research and Development Program of China
文摘The cerium conversion film was applied to improving the corrosion resistance of Mg-Gd-Y-Zr magnesium alloy. The film was electrodeposited on the surface of the Mg-RE alloy in cerium nitrate solution. The compositions and morphologies were analyzed by X-ray diffraction(XRD), scanning election microscopy (SEM). The corrosion behaviors of the film were investigated electrochemical impedance spectroscopy (EIS), potentiodynamic polarization tests and immersion tests. The results show that the optimum parameters for electrochemical deposition are as follows: pH 10.0, time 30 min, 50 mmol/L Na2CO3 and temperature 25 ℃ by the designed experiments according to the orthogonal table L(9, 34). The corrosion protection efficiency is dependent on the deposition parameters. The cerium conversion film shows better corrosion protection behavior than chromate conversion film on Mg-Gd-Y-Zr magnesium alloy.
文摘To determine the replacement of fish oil with vegetable oils in the diet of juvenile Jade perch Scortum barcoo, four feeds with each a different oil (fish, sunflower, linseed and a mixture of 75% canola and 25% linseed oil), were fed to Jade perch reared in recirculating aquaculture systems (RAS). The trial lasted for 10 weeks and the fatty acid (FA) profile of both feed and fish muscle tissue were examined. There was no difference in growth, feed conversion rate (FCR) and mortality. The fish grew from 10 g to 110 g with a FCR of 1.25 and 0 mortality. The FA profile of the fish muscle tissue reflected the FA profile of the feed. The flesh of the fish that were fed the linseed oil diet, were extremely high in omega-3 (n-3) polyunsaturated FA (n-3 PUFA) with 3.75% of wet weight. This is one of the highest concentrations of n-3 PUFA ever recorded in fish flesh. In a finishing feeding test, the remaining vegetable oil fed fish were fed the fish oil diet for another two weeks immediately after the 10 weeks trial, to check for a possible recovery of n-3 highly unsaturated fatty acids (HUFA). The wash out rate of FA towards n-3 HUFA in the muscle tissue was about 25% over this two weeks period.