A phosphate-mineralization microbe was used to induce barium phosphates precipitation, and the precipitates with different types were obtained under different pH values. The average crystallite size of the barium phos...A phosphate-mineralization microbe was used to induce barium phosphates precipitation, and the precipitates with different types were obtained under different pH values. The average crystallite size of the barium phosphates was calculated by particle size distribution curves, and the size of the products was 33.40, 29. 37, 24. 13, 47.76 and 96. 53 μm when the pH values of the mixed solution are 7, 8, 9, 10 and 11, respectively. The results of X-ray diffraction (XRD) show that the structures of the particles controlled by the mixed solution are mainly BaaPO4 when pH 〈 10; the barium phosphates are synthesized by biological deposition which is the mixture of BaHPO4 and Ba5 (PO4)3OH when pH = 10; when pH = 11, the barium phosphates are also the mixtures, which are Ba5 (PO4)3OH and BaNaPO4. The above results indicate that the phosphate-mineralization microbe can produce a certain enzyme which constantly hydrolyzes phosphate monoester in the mixed solution, and then PO4^3- ions are obtained.展开更多
A multi layered, feed forward Artificial Neural Network (ANN) was used to study the effect of feed mean size, collector dosage and impeller speed on flotation recovery and grade. The results of 30 flotation experiment...A multi layered, feed forward Artificial Neural Network (ANN) was used to study the effect of feed mean size, collector dosage and impeller speed on flotation recovery and grade. The results of 30 flotation experiments conducted on Jordanian siliceous phosphate were used for training the network while another 10 experiments were used for validation. Simulation results showed that a four layer network with a [9 11 5 9 2] architecture was the one that gave the least mean squared error (MSE). Using this ANN to optimize the flotation process showed that the optimum flotation parameters were 321.28 μm for the feed mean size, 0.7354 kg/TOF for the collector dosage and 1225.25 RPM for the impeller speed. Studying the effect of these parameters on flotation recovery and grade was done by analysis of variance, ANOVA. The results showed that grade was more sensitive to changes in flotation parameters than was recovery. They also showed that changes in collector dosage had a more significant effect on flotation grade and recovery than did changes in feed mean size or impeller speed.展开更多
The reaction kinetics for the leaching of low-grade scheelite concentrate was investigated in an autoclave with sodium hydroxide in the presence of phosphate. The effects of stirring speed (300-600 r/min), reaction te...The reaction kinetics for the leaching of low-grade scheelite concentrate was investigated in an autoclave with sodium hydroxide in the presence of phosphate. The effects of stirring speed (300-600 r/min), reaction temperature (353-383 K), sodium hydroxide concentration (1.69-6.76 mol/L) and phosphate concentration (0.68-1.69 mol/L) on the WO3 dissolution ratio were studied. The results showed that the WO3 dissolution ratio was practically independent of stirring speed, while it increased with increasing the reaction temperature, and the concentrations of sodium hydroxide and phosphate. The experimental data were consistent with the shrinking core model, with a surface chemical reaction as the leaching rate-determining step. The apparent activation energy was calculated as 49.56 kJ/mol, and the reaction orders with respect to the concentrations of sodium hydroxide and phosphate were determined as 0.27 and 0.67, respectively. The kinetics equation of the leaching process was established.展开更多
A novel coating technique was developed for controlling Pyrite oxidation. The technique invo1ved leachingpyrite particles with a solution containing low concentrations of phosphate and hydrogen peroxide. Duringthe lea...A novel coating technique was developed for controlling Pyrite oxidation. The technique invo1ved leachingpyrite particles with a solution containing low concentrations of phosphate and hydrogen peroxide. Duringthe leaching process, the iron released from pyrite by hydrogen proxide was precipitated by phosphate as aferric phosphate coating. This coating was shown to be able to effectively prevent Pyrite from oxidation and itcould be established at the expense of only surface portions of Pyrite. The emergence of this technique couldprovide a unique potential route for abating acid mine drainage and reclaiming sulfide-containing degradedmining land.展开更多
The effect of sodium pyrophosphate (SPH) on the separation of chalcopyrite from galena was examined through flotation, adsorption, electrokinetic studies and infrared spectral analysis. Differential flotation tests ...The effect of sodium pyrophosphate (SPH) on the separation of chalcopyrite from galena was examined through flotation, adsorption, electrokinetic studies and infrared spectral analysis. Differential flotation tests indicate that satisfactory separation can be achieved within the pH range from 2.5 to 6 using SPH to depress the galena, but not the chalcopyrite when O-isopropyl-N-ethyl thionocarbamate (IPETC) is used as the collector. The electrophoretic mohilities of both the minerals dramatically become negatively charged following SPH adsorption in the pH range from 2.5 to 12, The infrared spectral analysis suggests that chemical adsorption occurs on galena surface treated by SPH, indicating that a chelate complex has formed. At weakly acidic pH values, the adsorption density of IPETC onto galena is significantly reduced in the presence of SPH. However, the amount of IPETC adsorbed onto chalcopyrite almost remains at the same level. Since the observed adsorption density of IEPTC onto chalcopyrite is quite high compared to galena, the observed flotation results are explained. A possible mechanism for the interaction between the two sulphide minerals and SPH is discussed.展开更多
Chemical forms of the phosphate adsorbed on goethite surfaces and characteristics of the coordinategroups which exchange with P on goethite surfaces in solutions with different pll values were investigated.Results sho...Chemical forms of the phosphate adsorbed on goethite surfaces and characteristics of the coordinategroups which exchange with P on goethite surfaces in solutions with different pll values were investigated.Results showed that the chemical forms of P on goethite surfaces changed from the dominance of monodentatecorrdination to that of bidentate one with increasing pH of the solution. By influencing types of phosphateions in solutions, pH affected the chemical forms of P on goethite surfaces. The amount of OH ̄- displacedby phosphate on goethite surfaces was the most at pH 7.0, the second at pH 9.0, and the least at pH 4.5.展开更多
X-ray photoelectron spectroscopy (XPS) and automatic titrimeter were nsed to study the relation be-tween pH and the transformation of the coordinate forms of P on goethite surfaces. The results showed thatfor a given ...X-ray photoelectron spectroscopy (XPS) and automatic titrimeter were nsed to study the relation be-tween pH and the transformation of the coordinate forms of P on goethite surfaces. The results showed thatfor a given P concentration, increasing the pH of suspension could cause a fast transformation of monodentatecomplexes of phosphate ions on goethite surfaces to binuclear ones. When lowering the PH, additional adsorp-tion of P occurred and the binuclear complexes reverted slowly to the monodentate ones. The dissociationand association of protons of the sorbed P caused by PH changes was considered to be a major reason lewtingto the transformation of the coordinate forms of P on the surfaces. The stability of binuclear surface complexof P was greater than that of monodentate complex. The possible reactions on the interface of goethite andsolutions with pH changes, and the reasons causing the different stabilities of the two coordinate P complexesare discussed in the paper.展开更多
基金The National Natural Science Foundation of China(No.51372038No.51178104)+1 种基金the Scientific Research Foundation of Graduate School of Southeast University(No.YBJJ1453)the 333 Project of Jiangsu Province
文摘A phosphate-mineralization microbe was used to induce barium phosphates precipitation, and the precipitates with different types were obtained under different pH values. The average crystallite size of the barium phosphates was calculated by particle size distribution curves, and the size of the products was 33.40, 29. 37, 24. 13, 47.76 and 96. 53 μm when the pH values of the mixed solution are 7, 8, 9, 10 and 11, respectively. The results of X-ray diffraction (XRD) show that the structures of the particles controlled by the mixed solution are mainly BaaPO4 when pH 〈 10; the barium phosphates are synthesized by biological deposition which is the mixture of BaHPO4 and Ba5 (PO4)3OH when pH = 10; when pH = 11, the barium phosphates are also the mixtures, which are Ba5 (PO4)3OH and BaNaPO4. The above results indicate that the phosphate-mineralization microbe can produce a certain enzyme which constantly hydrolyzes phosphate monoester in the mixed solution, and then PO4^3- ions are obtained.
文摘A multi layered, feed forward Artificial Neural Network (ANN) was used to study the effect of feed mean size, collector dosage and impeller speed on flotation recovery and grade. The results of 30 flotation experiments conducted on Jordanian siliceous phosphate were used for training the network while another 10 experiments were used for validation. Simulation results showed that a four layer network with a [9 11 5 9 2] architecture was the one that gave the least mean squared error (MSE). Using this ANN to optimize the flotation process showed that the optimum flotation parameters were 321.28 μm for the feed mean size, 0.7354 kg/TOF for the collector dosage and 1225.25 RPM for the impeller speed. Studying the effect of these parameters on flotation recovery and grade was done by analysis of variance, ANOVA. The results showed that grade was more sensitive to changes in flotation parameters than was recovery. They also showed that changes in collector dosage had a more significant effect on flotation grade and recovery than did changes in feed mean size or impeller speed.
基金Projects(51674067,51422402) supported by the National Natural Science Foundation of ChinaProjects(N150101001,N160106004,N170106005) supported by the Fundamental Research Funds for the Central Universities,China
文摘The reaction kinetics for the leaching of low-grade scheelite concentrate was investigated in an autoclave with sodium hydroxide in the presence of phosphate. The effects of stirring speed (300-600 r/min), reaction temperature (353-383 K), sodium hydroxide concentration (1.69-6.76 mol/L) and phosphate concentration (0.68-1.69 mol/L) on the WO3 dissolution ratio were studied. The results showed that the WO3 dissolution ratio was practically independent of stirring speed, while it increased with increasing the reaction temperature, and the concentrations of sodium hydroxide and phosphate. The experimental data were consistent with the shrinking core model, with a surface chemical reaction as the leaching rate-determining step. The apparent activation energy was calculated as 49.56 kJ/mol, and the reaction orders with respect to the concentrations of sodium hydroxide and phosphate were determined as 0.27 and 0.67, respectively. The kinetics equation of the leaching process was established.
文摘A novel coating technique was developed for controlling Pyrite oxidation. The technique invo1ved leachingpyrite particles with a solution containing low concentrations of phosphate and hydrogen peroxide. Duringthe leaching process, the iron released from pyrite by hydrogen proxide was precipitated by phosphate as aferric phosphate coating. This coating was shown to be able to effectively prevent Pyrite from oxidation and itcould be established at the expense of only surface portions of Pyrite. The emergence of this technique couldprovide a unique potential route for abating acid mine drainage and reclaiming sulfide-containing degradedmining land.
基金Financial support from the Foundation of the State Key Laboratory of Comprehensive Utilization of Low-Grade Ores (Zijin Mining Group Co., Ltd.)the National Basic Research Program of China(No. 2010CB630905)
文摘The effect of sodium pyrophosphate (SPH) on the separation of chalcopyrite from galena was examined through flotation, adsorption, electrokinetic studies and infrared spectral analysis. Differential flotation tests indicate that satisfactory separation can be achieved within the pH range from 2.5 to 6 using SPH to depress the galena, but not the chalcopyrite when O-isopropyl-N-ethyl thionocarbamate (IPETC) is used as the collector. The electrophoretic mohilities of both the minerals dramatically become negatively charged following SPH adsorption in the pH range from 2.5 to 12, The infrared spectral analysis suggests that chemical adsorption occurs on galena surface treated by SPH, indicating that a chelate complex has formed. At weakly acidic pH values, the adsorption density of IPETC onto galena is significantly reduced in the presence of SPH. However, the amount of IPETC adsorbed onto chalcopyrite almost remains at the same level. Since the observed adsorption density of IEPTC onto chalcopyrite is quite high compared to galena, the observed flotation results are explained. A possible mechanism for the interaction between the two sulphide minerals and SPH is discussed.
文摘Chemical forms of the phosphate adsorbed on goethite surfaces and characteristics of the coordinategroups which exchange with P on goethite surfaces in solutions with different pll values were investigated.Results showed that the chemical forms of P on goethite surfaces changed from the dominance of monodentatecorrdination to that of bidentate one with increasing pH of the solution. By influencing types of phosphateions in solutions, pH affected the chemical forms of P on goethite surfaces. The amount of OH ̄- displacedby phosphate on goethite surfaces was the most at pH 7.0, the second at pH 9.0, and the least at pH 4.5.
文摘X-ray photoelectron spectroscopy (XPS) and automatic titrimeter were nsed to study the relation be-tween pH and the transformation of the coordinate forms of P on goethite surfaces. The results showed thatfor a given P concentration, increasing the pH of suspension could cause a fast transformation of monodentatecomplexes of phosphate ions on goethite surfaces to binuclear ones. When lowering the PH, additional adsorp-tion of P occurred and the binuclear complexes reverted slowly to the monodentate ones. The dissociationand association of protons of the sorbed P caused by PH changes was considered to be a major reason lewtingto the transformation of the coordinate forms of P on the surfaces. The stability of binuclear surface complexof P was greater than that of monodentate complex. The possible reactions on the interface of goethite andsolutions with pH changes, and the reasons causing the different stabilities of the two coordinate P complexesare discussed in the paper.