The influence of high concentration Zn^(2+) on the floatability of sphalerite in an acidic system was investigated via flotation experiments,zeta potential measurements,contact angle measurements,and X-ray photoelectr...The influence of high concentration Zn^(2+) on the floatability of sphalerite in an acidic system was investigated via flotation experiments,zeta potential measurements,contact angle measurements,and X-ray photoelectron spectroscopy.The results indicated that Zn^(2+) was adsorbed on the sphalerite surface and a Zn-hydroxyl complex was formed at a pH of 4 and a Zn^(2+) concentration of 4×10^(-2) mol/L.The zeta potential increased and the contact angle decreased from 84.80°to 36.48°,strongly inhibiting the floatability of sphalerite.When S^(2−) or Cu^(2+) activator was used alone,sphalerite was not activated after Zn^(2+) was adsorbed,and its contact angle did not change significantly.However,by using a combination of S^(2−) and Cu^(2+) activators,its floatability was realized after Zn^(2+) adsorption.This result was attributed to the removal of the Zn-hydroxyl complex on the surface of sphalerite by S^(2-).After this removal,Cu^(2+) was adsorbed on the sphalerite surface to form a Cu_(2)S·S^(0) hydrophobic film.展开更多
The solubilities of isophthalic acid (1) in binary acetic acid (2) + water (3) solvent mixtures were determined in a pressurized vessel. The temperature range was from 373.2 to 473.2K and the range of the mole ...The solubilities of isophthalic acid (1) in binary acetic acid (2) + water (3) solvent mixtures were determined in a pressurized vessel. The temperature range was from 373.2 to 473.2K and the range of the mole fraction of acetic acid in the solvent mixtures was from x2 = 0 to 1. A new method to measure the solubility was developed, which solved the problem of sampling at high temperature. The experimental results indicated that within the temperature range studied, the solubilities of isophthalic acid in all mixtures showed an increasing trend with increasing tem- perature. The expe^mental solubilities were co .rrelated by the Buchowski equation, and the calculate results showed good agreement with the experimental solubilities. Furthermore, the mixed solvent systems were found to exhibit a maximum solubility effect on the solubility, which may be attributed to the intermolecular association between the solute and the solvent mixture: The maximum solubility effect was well modeled by the modified Wilson equation.展开更多
The extraction fraction E and overall volumetric mass transfer coefficient kka of TBP extracting butyric acid pro- cess in confined impinging jet reactors (CIJR) with two jets were investigated. The main variables t...The extraction fraction E and overall volumetric mass transfer coefficient kka of TBP extracting butyric acid pro- cess in confined impinging jet reactors (CIJR) with two jets were investigated. The main variables tested were the concentration of tri-butyl-phosphate (TBP) and butyric acid, the impinging velocity V, the impinging velocityratio of two phases Vorg/Vaq, the nozzle inner diameter di and the distance L between the jet axes and the top wall of the impinging chamber. The results showed that E and kLa increase with an increase of the impinging velocity V, the concentration ofTBP Corg, and the impinging velocity ratio Vor/Vaq. However, E and kta decrease with an increase of the inner diameter d1 from 1 to 2 mm, the concentration of butyric acid Caq from 0.5% (v/v) to 2% (v/v). The factor L ranging from 3 to 11 mm has a negligible effect on E and kLa. A correlation on these variables and kLa was proposed based on the experimental data. These results indicated good mass transfer oerformance of CIJR in the extraction operation.展开更多
基金the financial supports from the National Key R&D Program of China(Nos.2018YFC0903404,2018YFC1903400)the National Natural Science Foundation of China(No.51974138)+1 种基金the Natural Science Foundation of Jiangxi Province,China(No.20202BABL214022)the Research Startup Fund Project of JXUST,China(Nos.jxxjbs17032,jxxjbs19019).
文摘The influence of high concentration Zn^(2+) on the floatability of sphalerite in an acidic system was investigated via flotation experiments,zeta potential measurements,contact angle measurements,and X-ray photoelectron spectroscopy.The results indicated that Zn^(2+) was adsorbed on the sphalerite surface and a Zn-hydroxyl complex was formed at a pH of 4 and a Zn^(2+) concentration of 4×10^(-2) mol/L.The zeta potential increased and the contact angle decreased from 84.80°to 36.48°,strongly inhibiting the floatability of sphalerite.When S^(2−) or Cu^(2+) activator was used alone,sphalerite was not activated after Zn^(2+) was adsorbed,and its contact angle did not change significantly.However,by using a combination of S^(2−) and Cu^(2+) activators,its floatability was realized after Zn^(2+) adsorption.This result was attributed to the removal of the Zn-hydroxyl complex on the surface of sphalerite by S^(2-).After this removal,Cu^(2+) was adsorbed on the sphalerite surface to form a Cu_(2)S·S^(0) hydrophobic film.
基金Supported by the Natural Science Foundation of Zhejiang Province, China (Z4100351) and the Fundamental Research Funds for the Central Universities (2013QNA4035).
文摘The solubilities of isophthalic acid (1) in binary acetic acid (2) + water (3) solvent mixtures were determined in a pressurized vessel. The temperature range was from 373.2 to 473.2K and the range of the mole fraction of acetic acid in the solvent mixtures was from x2 = 0 to 1. A new method to measure the solubility was developed, which solved the problem of sampling at high temperature. The experimental results indicated that within the temperature range studied, the solubilities of isophthalic acid in all mixtures showed an increasing trend with increasing tem- perature. The expe^mental solubilities were co .rrelated by the Buchowski equation, and the calculate results showed good agreement with the experimental solubilities. Furthermore, the mixed solvent systems were found to exhibit a maximum solubility effect on the solubility, which may be attributed to the intermolecular association between the solute and the solvent mixture: The maximum solubility effect was well modeled by the modified Wilson equation.
基金Supported by the National Natural Science Foundation of China(21206002,21376016)the State Key Laboratory of Chemical Engineering(SKL-Ch E-13A03)
文摘The extraction fraction E and overall volumetric mass transfer coefficient kka of TBP extracting butyric acid pro- cess in confined impinging jet reactors (CIJR) with two jets were investigated. The main variables tested were the concentration of tri-butyl-phosphate (TBP) and butyric acid, the impinging velocity V, the impinging velocityratio of two phases Vorg/Vaq, the nozzle inner diameter di and the distance L between the jet axes and the top wall of the impinging chamber. The results showed that E and kLa increase with an increase of the impinging velocity V, the concentration ofTBP Corg, and the impinging velocity ratio Vor/Vaq. However, E and kta decrease with an increase of the inner diameter d1 from 1 to 2 mm, the concentration of butyric acid Caq from 0.5% (v/v) to 2% (v/v). The factor L ranging from 3 to 11 mm has a negligible effect on E and kLa. A correlation on these variables and kLa was proposed based on the experimental data. These results indicated good mass transfer oerformance of CIJR in the extraction operation.