The sorption behaviour of acid dyes by soybean protein/poly(vinyl alcohol) blend fibre was studied. The quantity of dye sorbed by the fibre increased markedly with the decrease in the pH of dyebath and reduced with th...The sorption behaviour of acid dyes by soybean protein/poly(vinyl alcohol) blend fibre was studied. The quantity of dye sorbed by the fibre increased markedly with the decrease in the pH of dyebath and reduced with the addition of neutral electrolyte when the pH was below 4.5. Acid dyes exhibited higher sorption rate constant and lower half dyeing time for the fibre than for spun silk and wool, which was related to the special morphological structure of the fibre. At pH 4, the sorption of disulphonated acid dyes with higher molecular weight followed the dual sorption mechanism of Langmuir plus Nernst-type partitioning well as they interacted with the fibre through electrostatic forces, hydrophobic forces and hydrogen bonds. It is considered that soybean protein and PVA components should be simultaneously dyed by disulphonated acid dyes with higher molecular weight.展开更多
基金the Science and Technology Development Project of the Chinese Ministry of Science and Technology ( No2004BA304B05-03)
文摘The sorption behaviour of acid dyes by soybean protein/poly(vinyl alcohol) blend fibre was studied. The quantity of dye sorbed by the fibre increased markedly with the decrease in the pH of dyebath and reduced with the addition of neutral electrolyte when the pH was below 4.5. Acid dyes exhibited higher sorption rate constant and lower half dyeing time for the fibre than for spun silk and wool, which was related to the special morphological structure of the fibre. At pH 4, the sorption of disulphonated acid dyes with higher molecular weight followed the dual sorption mechanism of Langmuir plus Nernst-type partitioning well as they interacted with the fibre through electrostatic forces, hydrophobic forces and hydrogen bonds. It is considered that soybean protein and PVA components should be simultaneously dyed by disulphonated acid dyes with higher molecular weight.