Chemical-looping gasification (CLG) is a novel process for syngas generation from solid fuels, sharing the same basic principles as chemical-looping combustion (CLC). It also uses oxygen carriers (mainly metal ox...Chemical-looping gasification (CLG) is a novel process for syngas generation from solid fuels, sharing the same basic principles as chemical-looping combustion (CLC). It also uses oxygen carriers (mainly metal oxide and calcium sulfate) to transfer heat and oxygen to the fuel. In this paper, the primary investigation into the CLG process with CaSO4 as oxygen carrier was carried out by thermodynamic analysis and experiments in the tube reactor. Sulfur-contained gas emission was mainly H2S rather than SO2 in the CLG process, showing some different features from the CLC. The mass and heat balance of CLG processes were calculated thermodynamically to determinate the auto-thermal operating conditions with different CaSO4/C and steam/C molar ratios. It was found that the CaSO4/C molar ratio should be higher than 0.2 to reach auto-thermal balance. The effect of temperature on the reactions between oxygen carrier and coal was investigated based on Gibbs free energy minimum method and ex- perimental results. It indicated that high temperature favored the CLG process in the fuel reactor and part of syngas was consumed to compensate for auto-thermal system.展开更多
Catalysts CuOx/γ,-Al2O3-IH and CuOx/γ/-Al2O3-IM were prepared, characterized, and tested for styrene combustion in the absence and presence of water vapor. The effect of copper valence of the catalysts on the cataly...Catalysts CuOx/γ,-Al2O3-IH and CuOx/γ/-Al2O3-IM were prepared, characterized, and tested for styrene combustion in the absence and presence of water vapor. The effect of copper valence of the catalysts on the catalytic activity for styrene combustion was discussed using the theory of hard soft acids and bases (HSAB). The results showed that the existence of water vapor in feed stream inhibited the catalytic activity for styrene combustion due to the competition adsorption of water molecule. HSAB theory confirmed that the local soft acidity of the catalyst CuOx/^-AI203-1H was much stronger than that of the catalyst CuOx/^-AI203-1M because of the higher content of soft acid Cu+ on its surface, which increased the adsorption ability toward soft base of styrene and reduced the adsorption toward hard base of water vapor, and thus increased the catalytic activity for styrene combustion and weakened the negative influence of water vapor.展开更多
With consideration to the acid gas incinerator burned and the problems identified during its application, renovation program has been proposed. According to the new design, draught burners with automatic control syste...With consideration to the acid gas incinerator burned and the problems identified during its application, renovation program has been proposed. According to the new design, draught burners with automatic control system shall be used to eliminate problems encountered during application of original burner. In addition to implement automatic control of combustion processes, the new system may minimize labor intensity and enhance safety of facilities.展开更多
Biomass has a tendency to adsorb mercury from the flue gas emissions from fossil fuel combustion. In this paper, we have established an experimental table of the adsorption of mercury vapor by rice husk ash according ...Biomass has a tendency to adsorb mercury from the flue gas emissions from fossil fuel combustion. In this paper, we have established an experimental table of the adsorption of mercury vapor by rice husk ash according to the method described in the Chinese national standard GB/T 5009.17-1996. The experimental stud)' was made using rice husk ash samples of different types and at different temperatures. The results show that the carbon content of the rice husk ash was 3.81% after treatment for 1 h at 600℃, the mercury removal rate was above 95%, but the adsorption efficiency was below 20% after incineration for 4 h. The adsorption efficiency of rice husk ash treated by H202 or HCI was very low, while the adsorption efficiency was very high when rice husk ash was pyrolytically carbonized or basified by NaOH; the adsorption efficiency ofbasified rice husk ash sample was up to 98.5%. The carbon content of rice husk ash could affect the adsorption of mercury to some degree, but the internal structure of the rice husk ash samples was a more important factor for adsorption.展开更多
基金Supported by the National~ Natural Science Foundation of China (20876079), the Natural Science Funds for Distinguished Young Scholar in Shandong Province (JQ200904), and Shandong Province Key Technologies Research and Development Program of China (2008GG 10006010, 2009GG 10007001).
文摘Chemical-looping gasification (CLG) is a novel process for syngas generation from solid fuels, sharing the same basic principles as chemical-looping combustion (CLC). It also uses oxygen carriers (mainly metal oxide and calcium sulfate) to transfer heat and oxygen to the fuel. In this paper, the primary investigation into the CLG process with CaSO4 as oxygen carrier was carried out by thermodynamic analysis and experiments in the tube reactor. Sulfur-contained gas emission was mainly H2S rather than SO2 in the CLG process, showing some different features from the CLC. The mass and heat balance of CLG processes were calculated thermodynamically to determinate the auto-thermal operating conditions with different CaSO4/C and steam/C molar ratios. It was found that the CaSO4/C molar ratio should be higher than 0.2 to reach auto-thermal balance. The effect of temperature on the reactions between oxygen carrier and coal was investigated based on Gibbs free energy minimum method and ex- perimental results. It indicated that high temperature favored the CLG process in the fuel reactor and part of syngas was consumed to compensate for auto-thermal system.
基金Supported by the National Natural Science Foundation of China(21366008)the Foundation of Guizhou University((2010)040)the Science & Technology Foundation of Guizhou Province((2012)2152)
文摘Catalysts CuOx/γ,-Al2O3-IH and CuOx/γ/-Al2O3-IM were prepared, characterized, and tested for styrene combustion in the absence and presence of water vapor. The effect of copper valence of the catalysts on the catalytic activity for styrene combustion was discussed using the theory of hard soft acids and bases (HSAB). The results showed that the existence of water vapor in feed stream inhibited the catalytic activity for styrene combustion due to the competition adsorption of water molecule. HSAB theory confirmed that the local soft acidity of the catalyst CuOx/^-AI203-1H was much stronger than that of the catalyst CuOx/^-AI203-1M because of the higher content of soft acid Cu+ on its surface, which increased the adsorption ability toward soft base of styrene and reduced the adsorption toward hard base of water vapor, and thus increased the catalytic activity for styrene combustion and weakened the negative influence of water vapor.
文摘With consideration to the acid gas incinerator burned and the problems identified during its application, renovation program has been proposed. According to the new design, draught burners with automatic control system shall be used to eliminate problems encountered during application of original burner. In addition to implement automatic control of combustion processes, the new system may minimize labor intensity and enhance safety of facilities.
文摘Biomass has a tendency to adsorb mercury from the flue gas emissions from fossil fuel combustion. In this paper, we have established an experimental table of the adsorption of mercury vapor by rice husk ash according to the method described in the Chinese national standard GB/T 5009.17-1996. The experimental stud)' was made using rice husk ash samples of different types and at different temperatures. The results show that the carbon content of the rice husk ash was 3.81% after treatment for 1 h at 600℃, the mercury removal rate was above 95%, but the adsorption efficiency was below 20% after incineration for 4 h. The adsorption efficiency of rice husk ash treated by H202 or HCI was very low, while the adsorption efficiency was very high when rice husk ash was pyrolytically carbonized or basified by NaOH; the adsorption efficiency ofbasified rice husk ash sample was up to 98.5%. The carbon content of rice husk ash could affect the adsorption of mercury to some degree, but the internal structure of the rice husk ash samples was a more important factor for adsorption.