Cellulose nanocrystals (CNCs) of rod-like shape were prepared from degreased cotton using sulfuric acid hydrolysis. The obtained CNC suspension was neutralized using a sodium hydroxide solution to remove the...Cellulose nanocrystals (CNCs) of rod-like shape were prepared from degreased cotton using sulfuric acid hydrolysis. The obtained CNC suspension was neutralized using a sodium hydroxide solution to remove the residual sulfuric acid and improve the thermal stability of the CNC particles. Then, poly(ethylene oxide) (PEO) was employed to modify the nanocrystals through entanglement and physical adsorption. The goal was to further improve the thermal stability and weaken the hydrophilicity of CNCs. Original and modifed CNCs were dosed into a polylactic acid (PLA) matrix to prepare nanocomposites using a hot compression process. Results of the thermogravimetric analysis showed that the initial thermal decomposition temperature of the modifed CNCs showed a 120℃ improvement compared to the original CNCs. That is, the thermal stability of the modified CNCs improved because of their shielding and wrapping by a PEO layer on their surface. Results from scanning electron microscopy and ultraviolet-visible spectrophotometry showed that the compatibility of the modifed CNCs with organic PLA improved, which was attributed to the compatibility of the PEO chains adsorbed on the surface of the CNCs. Finally, the results of tensile tests indicated a significant improvement in terms of breaking strength and elongation at the break point.展开更多
We experimentally studied the catalytic performances of a series of Brrnsted-Lewis acidic N-methyl-2-pyrrolidonium metal chlorides ([Hnmp]Cl/MClx, where M=Fe, Zn, A1, or Cu) for the hydrolysis of microcrystalline ce...We experimentally studied the catalytic performances of a series of Brrnsted-Lewis acidic N-methyl-2-pyrrolidonium metal chlorides ([Hnmp]Cl/MClx, where M=Fe, Zn, A1, or Cu) for the hydrolysis of microcrystalline cellulose (MCC) and cotton to produce reducing sugar. A variety of factors, such as temperature, time, ionic liquid (IL) species, IL dosage, and the concentra- tion of the metal chloride were investigated. [Hnmp]Cl/FeCl3 presented the best hydrolysis performance, affording a 98.8% yield of total reducing sugar from MCC (1 h, 100 ℃, 0.1 g MCC, 0.2 g acidic IL, 2.0 g [Bmim]Cl as solvent), which is better than or comparable to results previously obtained with other -SO3H functionalized acidic ILs. The hydrolysis performances of [Hnmp]Cl/MClx were rationalized using density functional theory calculations, which indicated that interactions between the metal chlorides and the cellulose, including charge-transfer interactions are important in the hydrolysis of cellulose and degra- dation of glucose. This work shows that Bronsted-Lewis acidic ILs are potential catalysts for the hydrolysis of cellulose to produce sugar.展开更多
基金the National Natural Science Foundation of China (grant Nos. 31570578 and 31270632)the Fundamental Research Funds for the Central Universities (grant No. JUSRP51622A)the State Key Laboratory of Pulp and Paper Engineering (grant No. 201809)
文摘Cellulose nanocrystals (CNCs) of rod-like shape were prepared from degreased cotton using sulfuric acid hydrolysis. The obtained CNC suspension was neutralized using a sodium hydroxide solution to remove the residual sulfuric acid and improve the thermal stability of the CNC particles. Then, poly(ethylene oxide) (PEO) was employed to modify the nanocrystals through entanglement and physical adsorption. The goal was to further improve the thermal stability and weaken the hydrophilicity of CNCs. Original and modifed CNCs were dosed into a polylactic acid (PLA) matrix to prepare nanocomposites using a hot compression process. Results of the thermogravimetric analysis showed that the initial thermal decomposition temperature of the modifed CNCs showed a 120℃ improvement compared to the original CNCs. That is, the thermal stability of the modified CNCs improved because of their shielding and wrapping by a PEO layer on their surface. Results from scanning electron microscopy and ultraviolet-visible spectrophotometry showed that the compatibility of the modifed CNCs with organic PLA improved, which was attributed to the compatibility of the PEO chains adsorbed on the surface of the CNCs. Finally, the results of tensile tests indicated a significant improvement in terms of breaking strength and elongation at the break point.
基金supported by the National Natural Science Foundation of China (21176021, 21276020)Fundamental Research Funds for the Central Universities (YS1401)+1 种基金the National High Technology Research and Development Program of China (2012AA- 101803)the Deanship of Scientific Research at King Saud University for funding the work through the research group project (RG-1436-026)
文摘We experimentally studied the catalytic performances of a series of Brrnsted-Lewis acidic N-methyl-2-pyrrolidonium metal chlorides ([Hnmp]Cl/MClx, where M=Fe, Zn, A1, or Cu) for the hydrolysis of microcrystalline cellulose (MCC) and cotton to produce reducing sugar. A variety of factors, such as temperature, time, ionic liquid (IL) species, IL dosage, and the concentra- tion of the metal chloride were investigated. [Hnmp]Cl/FeCl3 presented the best hydrolysis performance, affording a 98.8% yield of total reducing sugar from MCC (1 h, 100 ℃, 0.1 g MCC, 0.2 g acidic IL, 2.0 g [Bmim]Cl as solvent), which is better than or comparable to results previously obtained with other -SO3H functionalized acidic ILs. The hydrolysis performances of [Hnmp]Cl/MClx were rationalized using density functional theory calculations, which indicated that interactions between the metal chlorides and the cellulose, including charge-transfer interactions are important in the hydrolysis of cellulose and degra- dation of glucose. This work shows that Bronsted-Lewis acidic ILs are potential catalysts for the hydrolysis of cellulose to produce sugar.