Alkali-leaching and acid-leaching were proposed for the dephosphorization of Changde iron ore, which contains an average of 1.12% for phosphorus content. Sodium hydroxide, sulfuriced, hydrochloric and nitric acids wer...Alkali-leaching and acid-leaching were proposed for the dephosphorization of Changde iron ore, which contains an average of 1.12% for phosphorus content. Sodium hydroxide, sulfuriced, hydrochloric and nitric acids were used for the preparation of leach solutions. The results show that phosphorus occurring as apatite phase could be removed by alkali-leaching, but those occurring in the iron phase could not. Sulfuric acid is the most effective among the three kinds of acid. 91.61% phosphorus removal was attained with 1% sulfuric acid after leaching for 20 rain at room temperature. Iron loss during acid-leaching can be negligible, which was less than 0.25%.The pH value of solution after leaching with1% sulfuric acid was about 0.86, which means acid would not be exhausted during the process and it could be recycled, and the recycle of sulfuric acid solution would make the dephosphorization process more economical.展开更多
基金Project (50321402) supported by the National Natural Science Foundation of China project(2004CB619204) supported by Major State Basic Research Development Program of China
文摘Alkali-leaching and acid-leaching were proposed for the dephosphorization of Changde iron ore, which contains an average of 1.12% for phosphorus content. Sodium hydroxide, sulfuriced, hydrochloric and nitric acids were used for the preparation of leach solutions. The results show that phosphorus occurring as apatite phase could be removed by alkali-leaching, but those occurring in the iron phase could not. Sulfuric acid is the most effective among the three kinds of acid. 91.61% phosphorus removal was attained with 1% sulfuric acid after leaching for 20 rain at room temperature. Iron loss during acid-leaching can be negligible, which was less than 0.25%.The pH value of solution after leaching with1% sulfuric acid was about 0.86, which means acid would not be exhausted during the process and it could be recycled, and the recycle of sulfuric acid solution would make the dephosphorization process more economical.