To clarify the precipitation of silica hydrate from the real desilication solutions of aluminosilicate solid wastes by adding seeds and improve integrated waste utilization,the seeded precipitation was studied using s...To clarify the precipitation of silica hydrate from the real desilication solutions of aluminosilicate solid wastes by adding seeds and improve integrated waste utilization,the seeded precipitation was studied using synthesized sodium silicate solution containing different inorganic salt impurities.The results show that sodium chloride,sodium sulfate,sodium carbonate,or calcium chloride can change the siloxy group structure.The number of high-polymeric siloxy groups decreases with increasing sodium chloride or sodium sulfate concentration,which is detrimental to seeded precipitation.Calcium chloride favors the polymerization of silicate ions,and even the chain groups precipitate with the precipitation of high-polymeric sheet and cage-like siloxy groups.The introduced sodium cations in sodium carbonate render a more open network structure of high-polymeric siloxy groups,although the carbonate ions favor the polymerization of siloxy groups.No matter how the four impurities affect the siloxy group structure,the precipitates are always amorphous opal-A silica hydrate.展开更多
Cu, As, Sb and Bi in copper electrolyte could be efficiently removed by reducing with SO2 followed by evaporative crystallization. As2O3 and CuSO4·5H2O were obtained after crystallized product was treated by diss...Cu, As, Sb and Bi in copper electrolyte could be efficiently removed by reducing with SO2 followed by evaporative crystallization. As2O3 and CuSO4·5H2O were obtained after crystallized product was treated by dissolution, oxidation, neutralization, sedimentation, filtration and evaporative crystallization. The removal rates of Cu, As, Sb and Bi are 87.1%, 83.9%, 21.0% and 84.7%, respectively, when As (Ⅴ) in copper electrolyte is fully reduced to As (Ⅲ) by SO2, and the H2SO4 in concentrated copper electrolyte is 645 g/L. The removal rate of As is 92.81% when 65 g crystallized product is dissolved in 200 mL water at 30 ℃. The CuSO4·5H2O content is 98.8% when the filtrate is purified under the conditions that n(Fe):n(As) is 1.2, the dosage of H2O2 is 19 times the stoichiometric needed, temperature is 45 ℃, time is 40 min, pH is 3.7, and then is evaporation crystallized.展开更多
The Hastelloy C22 coatings on Q235 steel substrate were produced by high power diode laser cladding technique. Their corrosion behaviors in static and cavitation hydrochloric, sulfuric and nitric acid solutions were i...The Hastelloy C22 coatings on Q235 steel substrate were produced by high power diode laser cladding technique. Their corrosion behaviors in static and cavitation hydrochloric, sulfuric and nitric acid solutions were investigated. The electrochemical results show that corrosion resistance of coatings in static acid solutions is higher than that in cavitation ones. In each case, coating corrosion resistance in descending order is in nitric, sulfuric and hydrochloric acid solutions. Obvious erosion-corrosion morphology and serious intercrystalline corrosion of coating are noticed in cavitation hydrochloric acid solution. This is mainly ascribed to the aggressive ions in hydrochloric acid solution and mechanical effect from cavitation bubbles collapse. While coating after corrosion test in cavitation nitric acid solution shows nearly unchanged surface morphology. The results indicate that the associated action of cavitation and property of acid solution determines the corrosion development of coating. Hastelloy C22 coating exhibits better corrosion resistance in oxidizing acid solution for the stable formation of dense oxide film on the surface.展开更多
The function mechanism of Sb(V) in As, Sb and Bi impurities removal from copper electrolyte was investigated by adding Sb(V) ion in a synthetic copper electrolyte containing 45 g/L Cu2+, 185 g/L H2SO4, 10 g/L As ...The function mechanism of Sb(V) in As, Sb and Bi impurities removal from copper electrolyte was investigated by adding Sb(V) ion in a synthetic copper electrolyte containing 45 g/L Cu2+, 185 g/L H2SO4, 10 g/L As and 0.5 g/L Bi. The electrolyte was filtered, and the precipitate structure, morphology and composition were characterized by chemical analysis, SEM, TEM, EDS, XRD and FTIR. The results show that the precipitate is in the shape of many irregular lumps with size of 50-200 μm, and it mainly consists of As, Sb, Bi and O elements. The main characteristic bands in the FTIR spectra of the precipitate are As-O-As, As-O-Sb, Sb-O-Bi, Sb-O-Sb and Bi-O-Bi. The precipitate is the mixture of microcrystalline of AsSbO4, BiSbO4 and Bi3SbO7 by XRD and electronic diffraction. The removal of As, Sb and Bi impurities by Sb(V) ion can be mainly ascribed to the formation of antimonate in copper electrolytes.展开更多
The special experimental device and sulfuric acid electrolyte were adopted to study the influence of anodic oxidation heat on hard anodic film for 2024 aluminum alloy. Compared with the oxidation heat transferred to t...The special experimental device and sulfuric acid electrolyte were adopted to study the influence of anodic oxidation heat on hard anodic film for 2024 aluminum alloy. Compared with the oxidation heat transferred to the electrolyte through anodic film, the heat transferred to the coolant through aluminum substrate is more beneficial to the growth of anodic film. The film forming speed, film thickness, density and hardness are significantly increased as the degree of undercooling of the coolant increases. The degree of undercooling of the coolant, which is necessary for the growth of anodic film, is related to the degree of undercooling of the electrolyte, thickness of aluminum substrate, thickness of anodic film, natural parameters of bubble covering and current density. The microstructure and performance of the oxidation film could be controlled by the temperature of the coolant.展开更多
For understanding the function of tonoplast protein in plant cell signal pathway, we have identified an integral protein kinase activity from the highly purified tonoplast isolated from maize ( Zea mays L.) root by...For understanding the function of tonoplast protein in plant cell signal pathway, we have identified an integral protein kinase activity from the highly purified tonoplast isolated from maize ( Zea mays L.) root by a new nonradioactive method in which a color labeled peptide was used as substrate. The protein kinase was Ca 2+ _dependent and CaM and phosphatidylserine_independent, like the calmodulin_like domain protein kinase (CDPK) in many plants. The optimal pH value and Ca 2+ concentration were 6.5 and 10 μmol/L, respectively. According to the optimal pH value and the effect of detergent, it could be inferred that the active site of this protein kinase is oriented toward the cytoplasm. Zn 2+ had no obvious effect on its activity, indicating that this protein kinase has no zinc_finger domain that exists in some mammalian protein kinases. At the same time, when tonoplast proteins were prephosphorylated in the presence of Ca 2+ and ATP, both the ATP_hydrolysis and the proton_transport activity of vacuolar H +_ATPase were stimulated. This stimulation could be reversed by an alkaline_phosphatase. These results indicate that a Ca 2+ _dependent protein kinase was located in the tonoplast, and a Ca 2+ _dependent phosphorylation, probably caused by this kinase, activated the vacuolar H +_ATPase activity. These results are helpful for further research on the function of CDPK in the course of signal transduction in plants.展开更多
The peroxyoxalate chemiluminescence(CL)detection of fatty acids in human se- rum combined with high-performance liquid chromatography (HPLC)is described.Some fatty acids in serum were extracted with a 1 :1(v/v)mixture...The peroxyoxalate chemiluminescence(CL)detection of fatty acids in human se- rum combined with high-performance liquid chromatography (HPLC)is described.Some fatty acids in serum were extracted with a 1 :1(v/v)mixture of chloroform-n-heptane.2-(4-Hydrazinocarbonyl- phenyl)-4,5-diphenylimidazole (HCPI) was used as a fluorescent labelling reagent of the fatty acids. The labelling reaction was carried out at 30℃ for 1 h at pH 6.5 and the resulting reaction mixture was sudjected to HPLC. The labelled fatty acid C_(17)(P-C_(17))was used as the internal standard. The la- belled fatty acids C_(16) and C_(18) were separated within 18 min on an ODS-8OTM column (150 mm× 6 mm ID,5μm,Tosoh Japan).The calibrlation curves of fatty acids from the spiked control serum were Y_1=-0.003 7 + 0.0028X_1,r=0.994 for FA C_( 16) and Y_2=0.00 1 2 + 0.00098X_2,r=0.999 for FA C_( 18),respectively.The average recoveries of facids from the spiked contrl serum were 107.2%(n=8,RSD=4.3%)for FA C_(16) and 97.35%(n=8, RSD=4.0%)for FA C_(18),respectively.The lower detection limits of fatty acids after reaction were 12μmol per 20μl injection for FA C_(16) and 18 μmol per 20μl injection for FA C_(18),respectively(signal to noise ratio, S/N=2).The HPLC/CL method was applied to the determination of FA C_(16) and FA C_(18) in normal human serum and the results showed that the concentrations of fatty acids in normal human serum were 0.134 ± 0.009 μ mol/ml serum(n=5) for FA C_(16) and 0.052±0.028 μmol/ml serum(n=5)for FA C_(18),respectively.展开更多
A novel nelnatic liquid crystal compound containing a cinnamoyl moiety (PCPC) and a typically cholesteric liquid crystal cholesteryl cinnamate (CC) were synthesized to explore the mechanism ofcinnamoyl compounds, ...A novel nelnatic liquid crystal compound containing a cinnamoyl moiety (PCPC) and a typically cholesteric liquid crystal cholesteryl cinnamate (CC) were synthesized to explore the mechanism ofcinnamoyl compounds, and the chemical structures of photodimerization were confirmed by Fourier transform infrared spectroscopy and 1H nuclear magnetic resonance spectral analysis. The photoreaction behaviors of these two cinnamoyl compounds in mesomorphic state and solution were investigated, UV-Vis spectral analysis was used to analyze the photoproduct. The results show that the photochemistry of PCPC in nematic state involves both photodimerization and photoisomerization, while CC shows a complex reaction which can be divided into three parts, and this has enabled us to present new data and interpretations regarding the [2+2] photocycloaddition reaction. Additionally, the results of UV-Vis spectral analysis in solutions strongly suggest that UV-Vis spectral analysis can be used to study the kinetic behaviors of cinnamoyl moiety photoreaction.展开更多
Metal-free catalysts are preferred during these days in organic synthesis or in polymeriza- tions. Sulfonic acid is reported to be efficient in catalyzing reactions between isocyanates and alcohols. In this work, synt...Metal-free catalysts are preferred during these days in organic synthesis or in polymeriza- tions. Sulfonic acid is reported to be efficient in catalyzing reactions between isocyanates and alcohols. In this work, synthesis of sulfonic acid immobilized organic nanoparticles (nanoacid) and its application in catalyzing urethane formation, are elaborated. The nanoacid can be simply prepared by miniemulsion polymerization with a reactive surfacrant, namely sodium 4-((perfluoronon-8-en-l-yl)oxy)benzenesulfonate, followed by an acidification. From the images of scanning electron microscope, the nanoacid obtained is found to be narrowly dispersed and the average diameter is around 90 nm. The measured sulfur content is 0.5%, from which the content of sulfonic acid in the nanoparticles is calculated to be 0.16 mmol/g. When catalyzing urethane formation based on hexamethylene diisocyanate and n-butanol, the nanoacid catalyst exhibits considerable efficiency.展开更多
The stability of calcium oxalate is critical for the removal of sodium oxalate from sodium aluminate solutions.This studyinvestigated the behavior of calcium oxalate in sodium aluminate solution containing sodium carb...The stability of calcium oxalate is critical for the removal of sodium oxalate from sodium aluminate solutions.This studyinvestigated the behavior of calcium oxalate in sodium aluminate solution containing sodium carbonate.Results show that calciumoxalate can be converted to tricalcium aluminate hydrate(TCA)and calcium carbonate in sodium aluminate solution and sodiumcarbonate solution,respectively.Elevating temperature,extending residence time,or increasing caustic soda concentration enhancesthe conversion ratio of calcium oxalate in sodium aluminate solution;as a consequence,anti-causticisation occurs.Stability ofcalcium-containing compounds in sodium aluminate solution containing sodium carbonate differs from that in sodium aluminatesolution or sodium carbonate solution.Na2CO3in aluminate solution accelerates the transformation of calcium oxalate;thus,aluminais lost because of4CaO·Al2O3·CO2·11H2O and TCA formation.Calcium carbonate,4CaO·Al2O3·CO2·11H2O and calcium oxalatecan change into TCA in sodium aluminate solution at elevated temperature.Calcium oxalate remains relatively stable in dilutealuminate solution within a short residence time at low temperature.Thus,a novel process for removal of sodium oxalate by limecausticisation was presented and employed in an alumina refinery in China.展开更多
Anodic behavior of pure Au as compared to platinum (Pt) in H2SO4 solutions was considered by different electrochemical techniques for an appropriate insight. Cyclic voltammetry studies showed two oxidation and one f...Anodic behavior of pure Au as compared to platinum (Pt) in H2SO4 solutions was considered by different electrochemical techniques for an appropriate insight. Cyclic voltammetry studies showed two oxidation and one film reduction peaks for Au, while one oxygen evolution reaction for Pt. Increasing H2804 concentration (from 0.5 to 1 mol/L) caused 2-fold increases in peak current density of Au. Increase in agitation promoted passive zone of Au, while it was negligible for Pt by potentiodynamic studies. Potentiostatic studies (2 h) at three anodic passive potentials in 1 mol/L H2SO4 showed that the admittance of Au was found to be the lowest at 1.4 V. Electrochemical noise measurements during the decay periods (16 h) after polarization showed that the thin passive film formed during potentiostatic polarization has been dissolved.展开更多
Lithium difluoro(axalato)borate (LiODFB) was synthesized in dimethyl carbonate (DMC) solvent and purified by the method of solventing-out crystallization. The structure characterization of the purified LiODFB was perf...Lithium difluoro(axalato)borate (LiODFB) was synthesized in dimethyl carbonate (DMC) solvent and purified by the method of solventing-out crystallization. The structure characterization of the purified LiODFB was performed by Fourier transform infrared (FTIR) spectrometry and nuclear magnetic resonance (NMR) spectrometry. The electrochemical properties of the cells using 1 mol/L LiPF6 and 1 mol/L LiODFB in ethylene carbonate (EC)/DMC were investigated, respectively. The results indicate that LiODFB can be reduced at about 1.5 V and form a robust protective solid electrolyte interface (SEI) film on the graphite surface in the first cycle. The graphite/LiNi1/3Mn1/3Co1/3O2 cells with LiODFB-based electrolyte have very good capacity retention at 55 ℃, and show very good rate capability at 0.5C and 1C charge/discharge rate. Therefore, as a new salt, LiODFB is a most promising alternative lithium salt to replace LiPF6 for lithium ion battery electrolytes in the future.展开更多
Passivity degradation of Alloy 800 in simulated crevice chemistries was systematically investigated using cyclic polarization curve, electrochemical impedance spectroscopy(EIS), Mott-Schottky analysis, Auger electron ...Passivity degradation of Alloy 800 in simulated crevice chemistries was systematically investigated using cyclic polarization curve, electrochemical impedance spectroscopy(EIS), Mott-Schottky analysis, Auger electron spectroscopy(AES)and atomic absorption spectrometry(AAS). Cyclic polarization showed that the pitting potential in a thiosulfate solution was much lower than in either a chloride solution or a sulfate-chloride solution. Mott-Schottky results revealed that passive films showed n-type semiconductivity, and the presence of thiosulfate in chloride solution led to an increased donor density in the passive film. EIS spectra indicated that thiosulfate enhanced the film dissolution rate in chloride solutions. Moreover, thiosulfate enhanced the pitting propagation rate in chloride solution by stabilizing the metastable pits and forming sulfide within the pits.展开更多
A hydroponic experiment was conducted to study the effect of partial replacement of NO-3-N by NH4+-N on the seedling growth and organic acid content of tomato (Lycopersicon esculentum Mill.). A completely randomized d...A hydroponic experiment was conducted to study the effect of partial replacement of NO-3-N by NH4+-N on the seedling growth and organic acid content of tomato (Lycopersicon esculentum Mill.). A completely randomized design was established with three replications and five treatments, i.e., NO-3-N/NH4+-N of 100/0, 75/25, 50/50, 25/75 and 0/100. Results showed that 25% replacement of NO3--N by NH4+-N significantly (P = 0.05) improved fresh and dry weight, revealing that a proper percentage of NH4+-N was important for tomato nitrogen nutrition. This could increase the plant growth even though tomato was a crop that preferred nitrate nutrition. Also an increase in the proportion of NH4+-N in the nutrient solution led to a significant decrease (P = 0.05) in malate, citrate and fumarate. However, the 25% NH4+-N plus 75% NO3--N treatment had no significant effect (P = 0.05) on the 2-ketoglutarate, succinate or oxalic acid content, showing that only some organic acids in tomato plants were affected. Only pyruvate increased significantly (P = 0.05), and it only increased for 25% and 50% replacement of NO3--N by NH4+-N. Metabolism of these organic acids, especially malate, citrate and fumarate, should be further studied at the molecular level in vegetables applied with different nitrogen forms.展开更多
Absorption of NOx into nitric acid solutions was studied in the presence of ozone by using a rotating packed bed(RPB) contactor.The influences of operating parameters,such as high gravity number,amount of ozone,gas ve...Absorption of NOx into nitric acid solutions was studied in the presence of ozone by using a rotating packed bed(RPB) contactor.The influences of operating parameters,such as high gravity number,amount of ozone,gas velocity,liquid spray density and inlet concentration of NOx,on the removal efficiency of NOx were investigated,among which the high gravity number and ozone amount are more important.Ozone was introduced to oxidize HNO2 to HNO3 to prevent the decomposition of HNO2 in the liquid phase.The high gravity number presents the effective external force for enhancing the mass transfer of ozone from gas phase to liquid phase.Under the experimental condition,the removal efficiency of NOx is higher than 90%and the concentration of nitric acid product exceeds 45%.展开更多
In this study, the oxidation rates of sulfur dioxide (SO2) in sulphuric acid solution by ozone and oxygen were compared, and the oxidation mechanism of ozone on SO2 was investigated. The results showed that the oxid...In this study, the oxidation rates of sulfur dioxide (SO2) in sulphuric acid solution by ozone and oxygen were compared, and the oxidation mechanism of ozone on SO2 was investigated. The results showed that the oxidation-reduction potential of the acidic solution was enhanced, the transformation rate of sulfuric acid to sulphuric acid was increased and the absorption driving force was improved in the presence of ozone. By comparing the amount of sulfate ions measured in the experiments and the theoretical amount of sulfate ions calculated from the amount of ozone consumed in the reaction, it can be confirmed that oxygen free radicals from dissociation of ozone are reactive as an efficient oxidant and oxygen from ozone generator participates in the reaction with SO2. 0.602 mol of effective oxygen was introduced into the reaction by one mole of ozone in 10.15 rain at sulphuric acid concentration of 3% (by mass), SO2 concentration of 1.33% (by volume) and oxygen flow rate of 1.5 L.min^-1 from ozone generator.展开更多
AIM: To detect the expression of pituitary adenylate cyclase-activating polypeptide receptor i (VPCAPrR) and VPCAP2-R mRNA in gallbladder tissues of patients with gallstone or gallbladder polyps. METHODS: The expr...AIM: To detect the expression of pituitary adenylate cyclase-activating polypeptide receptor i (VPCAPrR) and VPCAP2-R mRNA in gallbladder tissues of patients with gallstone or gallbladder polyps. METHODS: The expression of VPCAP1-R and VPCAP2-R mRNA in gallbladder tissues was detected in 25 patients with gallstone, 8 patients with gallbladder polyps and 7 donors of liver transplantation by reverse transcription polymerase chain reaction (RT-PCR). RESULTS: The VPCAP2-R mRNA expression level in the control group (1.09±0.58) was lower than that in the gallbladder polyp group (1.64±0.56) and the gallstone group (1.55±0.45) (P〈0.05) while the VPCAP1-R mRNA expression level in the control group (1.15 ±0.23) was not apparently different from that in the gallbladder polyp group (1.28±0.56) and the gallstone group (1.27± 0.38). CONCLUSION: The abnormal expression of VPCAP2-R mRNA in gallbladder tissue may play a role in the formation of gallbladder stone and gallbladder polyps.展开更多
The epoxidation of unsaturated fatty acid methyl esters(FAMEs)by peroxyacetic acid generated in situ from hydrogen peroxide and acetic acid was studied in the presence of SO3H-functional Brnsted acidic ionic liquid (I...The epoxidation of unsaturated fatty acid methyl esters(FAMEs)by peroxyacetic acid generated in situ from hydrogen peroxide and acetic acid was studied in the presence of SO3H-functional Brnsted acidic ionic liquid (IL)[C3SO3HMIM][HSO4]as catalyst.The effects of hydrogen peroxide/ethylenic unsaturation ratio,acetic acid concentration,IL concentration,recycling of the IL catalyst,and temperature on the conversion to oxirane were studied.The kinetics and thermodynamics of unsaturated FAMEs epoxidation and the kinetics of oxirane cleavage of the epoxidized FAMEs by acetic acid were also studied.The conversion of ethylenic unsaturation group to oxirane, the reaction rate of the conversion to oxirane,and the rate of hydrolysis(oxirane cleavage)were higher by using the IL catalyst.展开更多
基金financial support from the National Natural Science Foundation of China(No.52074364)。
文摘To clarify the precipitation of silica hydrate from the real desilication solutions of aluminosilicate solid wastes by adding seeds and improve integrated waste utilization,the seeded precipitation was studied using synthesized sodium silicate solution containing different inorganic salt impurities.The results show that sodium chloride,sodium sulfate,sodium carbonate,or calcium chloride can change the siloxy group structure.The number of high-polymeric siloxy groups decreases with increasing sodium chloride or sodium sulfate concentration,which is detrimental to seeded precipitation.Calcium chloride favors the polymerization of silicate ions,and even the chain groups precipitate with the precipitation of high-polymeric sheet and cage-like siloxy groups.The introduced sodium cations in sodium carbonate render a more open network structure of high-polymeric siloxy groups,although the carbonate ions favor the polymerization of siloxy groups.No matter how the four impurities affect the siloxy group structure,the precipitates are always amorphous opal-A silica hydrate.
文摘Cu, As, Sb and Bi in copper electrolyte could be efficiently removed by reducing with SO2 followed by evaporative crystallization. As2O3 and CuSO4·5H2O were obtained after crystallized product was treated by dissolution, oxidation, neutralization, sedimentation, filtration and evaporative crystallization. The removal rates of Cu, As, Sb and Bi are 87.1%, 83.9%, 21.0% and 84.7%, respectively, when As (Ⅴ) in copper electrolyte is fully reduced to As (Ⅲ) by SO2, and the H2SO4 in concentrated copper electrolyte is 645 g/L. The removal rate of As is 92.81% when 65 g crystallized product is dissolved in 200 mL water at 30 ℃. The CuSO4·5H2O content is 98.8% when the filtrate is purified under the conditions that n(Fe):n(As) is 1.2, the dosage of H2O2 is 19 times the stoichiometric needed, temperature is 45 ℃, time is 40 min, pH is 3.7, and then is evaporation crystallized.
文摘The Hastelloy C22 coatings on Q235 steel substrate were produced by high power diode laser cladding technique. Their corrosion behaviors in static and cavitation hydrochloric, sulfuric and nitric acid solutions were investigated. The electrochemical results show that corrosion resistance of coatings in static acid solutions is higher than that in cavitation ones. In each case, coating corrosion resistance in descending order is in nitric, sulfuric and hydrochloric acid solutions. Obvious erosion-corrosion morphology and serious intercrystalline corrosion of coating are noticed in cavitation hydrochloric acid solution. This is mainly ascribed to the aggressive ions in hydrochloric acid solution and mechanical effect from cavitation bubbles collapse. While coating after corrosion test in cavitation nitric acid solution shows nearly unchanged surface morphology. The results indicate that the associated action of cavitation and property of acid solution determines the corrosion development of coating. Hastelloy C22 coating exhibits better corrosion resistance in oxidizing acid solution for the stable formation of dense oxide film on the surface.
基金Project(50904023)supported by the National Natural Science Foundation of ChinaProject(2010B450001)supported by the Natural Science Fund of Department of Education of Henan Province,ChinaProject(092300410064)supported by the Basic and Frontier Technologies Research Projects of Henan Province,China
文摘The function mechanism of Sb(V) in As, Sb and Bi impurities removal from copper electrolyte was investigated by adding Sb(V) ion in a synthetic copper electrolyte containing 45 g/L Cu2+, 185 g/L H2SO4, 10 g/L As and 0.5 g/L Bi. The electrolyte was filtered, and the precipitate structure, morphology and composition were characterized by chemical analysis, SEM, TEM, EDS, XRD and FTIR. The results show that the precipitate is in the shape of many irregular lumps with size of 50-200 μm, and it mainly consists of As, Sb, Bi and O elements. The main characteristic bands in the FTIR spectra of the precipitate are As-O-As, As-O-Sb, Sb-O-Bi, Sb-O-Sb and Bi-O-Bi. The precipitate is the mixture of microcrystalline of AsSbO4, BiSbO4 and Bi3SbO7 by XRD and electronic diffraction. The removal of As, Sb and Bi impurities by Sb(V) ion can be mainly ascribed to the formation of antimonate in copper electrolytes.
基金Project (SBZDPY-11-17) supported by the Fund on Key Laboratory Project for Hydrodynamic Force, Ministry of Education, China Project (SZD0502-09-0) supported by Key Disciplines of Materials Processing Engineering of Sichuan Province, China
文摘The special experimental device and sulfuric acid electrolyte were adopted to study the influence of anodic oxidation heat on hard anodic film for 2024 aluminum alloy. Compared with the oxidation heat transferred to the electrolyte through anodic film, the heat transferred to the coolant through aluminum substrate is more beneficial to the growth of anodic film. The film forming speed, film thickness, density and hardness are significantly increased as the degree of undercooling of the coolant increases. The degree of undercooling of the coolant, which is necessary for the growth of anodic film, is related to the degree of undercooling of the electrolyte, thickness of aluminum substrate, thickness of anodic film, natural parameters of bubble covering and current density. The microstructure and performance of the oxidation film could be controlled by the temperature of the coolant.
文摘For understanding the function of tonoplast protein in plant cell signal pathway, we have identified an integral protein kinase activity from the highly purified tonoplast isolated from maize ( Zea mays L.) root by a new nonradioactive method in which a color labeled peptide was used as substrate. The protein kinase was Ca 2+ _dependent and CaM and phosphatidylserine_independent, like the calmodulin_like domain protein kinase (CDPK) in many plants. The optimal pH value and Ca 2+ concentration were 6.5 and 10 μmol/L, respectively. According to the optimal pH value and the effect of detergent, it could be inferred that the active site of this protein kinase is oriented toward the cytoplasm. Zn 2+ had no obvious effect on its activity, indicating that this protein kinase has no zinc_finger domain that exists in some mammalian protein kinases. At the same time, when tonoplast proteins were prephosphorylated in the presence of Ca 2+ and ATP, both the ATP_hydrolysis and the proton_transport activity of vacuolar H +_ATPase were stimulated. This stimulation could be reversed by an alkaline_phosphatase. These results indicate that a Ca 2+ _dependent protein kinase was located in the tonoplast, and a Ca 2+ _dependent phosphorylation, probably caused by this kinase, activated the vacuolar H +_ATPase activity. These results are helpful for further research on the function of CDPK in the course of signal transduction in plants.
文摘The peroxyoxalate chemiluminescence(CL)detection of fatty acids in human se- rum combined with high-performance liquid chromatography (HPLC)is described.Some fatty acids in serum were extracted with a 1 :1(v/v)mixture of chloroform-n-heptane.2-(4-Hydrazinocarbonyl- phenyl)-4,5-diphenylimidazole (HCPI) was used as a fluorescent labelling reagent of the fatty acids. The labelling reaction was carried out at 30℃ for 1 h at pH 6.5 and the resulting reaction mixture was sudjected to HPLC. The labelled fatty acid C_(17)(P-C_(17))was used as the internal standard. The la- belled fatty acids C_(16) and C_(18) were separated within 18 min on an ODS-8OTM column (150 mm× 6 mm ID,5μm,Tosoh Japan).The calibrlation curves of fatty acids from the spiked control serum were Y_1=-0.003 7 + 0.0028X_1,r=0.994 for FA C_( 16) and Y_2=0.00 1 2 + 0.00098X_2,r=0.999 for FA C_( 18),respectively.The average recoveries of facids from the spiked contrl serum were 107.2%(n=8,RSD=4.3%)for FA C_(16) and 97.35%(n=8, RSD=4.0%)for FA C_(18),respectively.The lower detection limits of fatty acids after reaction were 12μmol per 20μl injection for FA C_(16) and 18 μmol per 20μl injection for FA C_(18),respectively(signal to noise ratio, S/N=2).The HPLC/CL method was applied to the determination of FA C_(16) and FA C_(18) in normal human serum and the results showed that the concentrations of fatty acids in normal human serum were 0.134 ± 0.009 μ mol/ml serum(n=5) for FA C_(16) and 0.052±0.028 μmol/ml serum(n=5)for FA C_(18),respectively.
文摘A novel nelnatic liquid crystal compound containing a cinnamoyl moiety (PCPC) and a typically cholesteric liquid crystal cholesteryl cinnamate (CC) were synthesized to explore the mechanism ofcinnamoyl compounds, and the chemical structures of photodimerization were confirmed by Fourier transform infrared spectroscopy and 1H nuclear magnetic resonance spectral analysis. The photoreaction behaviors of these two cinnamoyl compounds in mesomorphic state and solution were investigated, UV-Vis spectral analysis was used to analyze the photoproduct. The results show that the photochemistry of PCPC in nematic state involves both photodimerization and photoisomerization, while CC shows a complex reaction which can be divided into three parts, and this has enabled us to present new data and interpretations regarding the [2+2] photocycloaddition reaction. Additionally, the results of UV-Vis spectral analysis in solutions strongly suggest that UV-Vis spectral analysis can be used to study the kinetic behaviors of cinnamoyl moiety photoreaction.
文摘Metal-free catalysts are preferred during these days in organic synthesis or in polymeriza- tions. Sulfonic acid is reported to be efficient in catalyzing reactions between isocyanates and alcohols. In this work, synthesis of sulfonic acid immobilized organic nanoparticles (nanoacid) and its application in catalyzing urethane formation, are elaborated. The nanoacid can be simply prepared by miniemulsion polymerization with a reactive surfacrant, namely sodium 4-((perfluoronon-8-en-l-yl)oxy)benzenesulfonate, followed by an acidification. From the images of scanning electron microscope, the nanoacid obtained is found to be narrowly dispersed and the average diameter is around 90 nm. The measured sulfur content is 0.5%, from which the content of sulfonic acid in the nanoparticles is calculated to be 0.16 mmol/g. When catalyzing urethane formation based on hexamethylene diisocyanate and n-butanol, the nanoacid catalyst exhibits considerable efficiency.
基金Project(51274242) supported by the National Natural Science Foundation of ChinaProject(2015CX001) supported by the Innovation-driven Plan of Central South University,China
文摘The stability of calcium oxalate is critical for the removal of sodium oxalate from sodium aluminate solutions.This studyinvestigated the behavior of calcium oxalate in sodium aluminate solution containing sodium carbonate.Results show that calciumoxalate can be converted to tricalcium aluminate hydrate(TCA)and calcium carbonate in sodium aluminate solution and sodiumcarbonate solution,respectively.Elevating temperature,extending residence time,or increasing caustic soda concentration enhancesthe conversion ratio of calcium oxalate in sodium aluminate solution;as a consequence,anti-causticisation occurs.Stability ofcalcium-containing compounds in sodium aluminate solution containing sodium carbonate differs from that in sodium aluminatesolution or sodium carbonate solution.Na2CO3in aluminate solution accelerates the transformation of calcium oxalate;thus,aluminais lost because of4CaO·Al2O3·CO2·11H2O and TCA formation.Calcium carbonate,4CaO·Al2O3·CO2·11H2O and calcium oxalatecan change into TCA in sodium aluminate solution at elevated temperature.Calcium oxalate remains relatively stable in dilutealuminate solution within a short residence time at low temperature.Thus,a novel process for removal of sodium oxalate by limecausticisation was presented and employed in an alumina refinery in China.
基金Project(RDCPJ428402) supported by the Natural Sciences and Engineering Research Council of Canada,Barrick Gold Corporation,Hydro-Quebec,Zinc Electrolytic of Canada
文摘Anodic behavior of pure Au as compared to platinum (Pt) in H2SO4 solutions was considered by different electrochemical techniques for an appropriate insight. Cyclic voltammetry studies showed two oxidation and one film reduction peaks for Au, while one oxygen evolution reaction for Pt. Increasing H2804 concentration (from 0.5 to 1 mol/L) caused 2-fold increases in peak current density of Au. Increase in agitation promoted passive zone of Au, while it was negligible for Pt by potentiodynamic studies. Potentiostatic studies (2 h) at three anodic passive potentials in 1 mol/L H2SO4 showed that the admittance of Au was found to be the lowest at 1.4 V. Electrochemical noise measurements during the decay periods (16 h) after polarization showed that the thin passive film formed during potentiostatic polarization has been dissolved.
基金Project(2007BAE12B01) supported by the National Key Technology Research and Development Program of ChinaProject(20803095) supported by the National Natural Science Foundation of China
文摘Lithium difluoro(axalato)borate (LiODFB) was synthesized in dimethyl carbonate (DMC) solvent and purified by the method of solventing-out crystallization. The structure characterization of the purified LiODFB was performed by Fourier transform infrared (FTIR) spectrometry and nuclear magnetic resonance (NMR) spectrometry. The electrochemical properties of the cells using 1 mol/L LiPF6 and 1 mol/L LiODFB in ethylene carbonate (EC)/DMC were investigated, respectively. The results indicate that LiODFB can be reduced at about 1.5 V and form a robust protective solid electrolyte interface (SEI) film on the graphite surface in the first cycle. The graphite/LiNi1/3Mn1/3Co1/3O2 cells with LiODFB-based electrolyte have very good capacity retention at 55 ℃, and show very good rate capability at 0.5C and 1C charge/discharge rate. Therefore, as a new salt, LiODFB is a most promising alternative lithium salt to replace LiPF6 for lithium ion battery electrolytes in the future.
基金Supported by the Atomic Energy of Canada Limited(AECL)and National Natural Science Foundation of China(No.51371124)
文摘Passivity degradation of Alloy 800 in simulated crevice chemistries was systematically investigated using cyclic polarization curve, electrochemical impedance spectroscopy(EIS), Mott-Schottky analysis, Auger electron spectroscopy(AES)and atomic absorption spectrometry(AAS). Cyclic polarization showed that the pitting potential in a thiosulfate solution was much lower than in either a chloride solution or a sulfate-chloride solution. Mott-Schottky results revealed that passive films showed n-type semiconductivity, and the presence of thiosulfate in chloride solution led to an increased donor density in the passive film. EIS spectra indicated that thiosulfate enhanced the film dissolution rate in chloride solutions. Moreover, thiosulfate enhanced the pitting propagation rate in chloride solution by stabilizing the metastable pits and forming sulfide within the pits.
基金Project supported by the National Natural Science Foundation of China (No. 30270790) and National Post-doctoral Foundation of China (No. 2003033494).
文摘A hydroponic experiment was conducted to study the effect of partial replacement of NO-3-N by NH4+-N on the seedling growth and organic acid content of tomato (Lycopersicon esculentum Mill.). A completely randomized design was established with three replications and five treatments, i.e., NO-3-N/NH4+-N of 100/0, 75/25, 50/50, 25/75 and 0/100. Results showed that 25% replacement of NO3--N by NH4+-N significantly (P = 0.05) improved fresh and dry weight, revealing that a proper percentage of NH4+-N was important for tomato nitrogen nutrition. This could increase the plant growth even though tomato was a crop that preferred nitrate nutrition. Also an increase in the proportion of NH4+-N in the nutrient solution led to a significant decrease (P = 0.05) in malate, citrate and fumarate. However, the 25% NH4+-N plus 75% NO3--N treatment had no significant effect (P = 0.05) on the 2-ketoglutarate, succinate or oxalic acid content, showing that only some organic acids in tomato plants were affected. Only pyruvate increased significantly (P = 0.05), and it only increased for 25% and 50% replacement of NO3--N by NH4+-N. Metabolism of these organic acids, especially malate, citrate and fumarate, should be further studied at the molecular level in vegetables applied with different nitrogen forms.
基金Supported by the Fund of Science and Technology of Shanxi for Young Scholars(2007021012)Research Project of Shanxi Provincial Science and Technology Department(20090321113)
文摘Absorption of NOx into nitric acid solutions was studied in the presence of ozone by using a rotating packed bed(RPB) contactor.The influences of operating parameters,such as high gravity number,amount of ozone,gas velocity,liquid spray density and inlet concentration of NOx,on the removal efficiency of NOx were investigated,among which the high gravity number and ozone amount are more important.Ozone was introduced to oxidize HNO2 to HNO3 to prevent the decomposition of HNO2 in the liquid phase.The high gravity number presents the effective external force for enhancing the mass transfer of ozone from gas phase to liquid phase.Under the experimental condition,the removal efficiency of NOx is higher than 90%and the concentration of nitric acid product exceeds 45%.
文摘In this study, the oxidation rates of sulfur dioxide (SO2) in sulphuric acid solution by ozone and oxygen were compared, and the oxidation mechanism of ozone on SO2 was investigated. The results showed that the oxidation-reduction potential of the acidic solution was enhanced, the transformation rate of sulfuric acid to sulphuric acid was increased and the absorption driving force was improved in the presence of ozone. By comparing the amount of sulfate ions measured in the experiments and the theoretical amount of sulfate ions calculated from the amount of ozone consumed in the reaction, it can be confirmed that oxygen free radicals from dissociation of ozone are reactive as an efficient oxidant and oxygen from ozone generator participates in the reaction with SO2. 0.602 mol of effective oxygen was introduced into the reaction by one mole of ozone in 10.15 rain at sulphuric acid concentration of 3% (by mass), SO2 concentration of 1.33% (by volume) and oxygen flow rate of 1.5 L.min^-1 from ozone generator.
文摘AIM: To detect the expression of pituitary adenylate cyclase-activating polypeptide receptor i (VPCAPrR) and VPCAP2-R mRNA in gallbladder tissues of patients with gallstone or gallbladder polyps. METHODS: The expression of VPCAP1-R and VPCAP2-R mRNA in gallbladder tissues was detected in 25 patients with gallstone, 8 patients with gallbladder polyps and 7 donors of liver transplantation by reverse transcription polymerase chain reaction (RT-PCR). RESULTS: The VPCAP2-R mRNA expression level in the control group (1.09±0.58) was lower than that in the gallbladder polyp group (1.64±0.56) and the gallstone group (1.55±0.45) (P〈0.05) while the VPCAP1-R mRNA expression level in the control group (1.15 ±0.23) was not apparently different from that in the gallbladder polyp group (1.28±0.56) and the gallstone group (1.27± 0.38). CONCLUSION: The abnormal expression of VPCAP2-R mRNA in gallbladder tissue may play a role in the formation of gallbladder stone and gallbladder polyps.
文摘The epoxidation of unsaturated fatty acid methyl esters(FAMEs)by peroxyacetic acid generated in situ from hydrogen peroxide and acetic acid was studied in the presence of SO3H-functional Brnsted acidic ionic liquid (IL)[C3SO3HMIM][HSO4]as catalyst.The effects of hydrogen peroxide/ethylenic unsaturation ratio,acetic acid concentration,IL concentration,recycling of the IL catalyst,and temperature on the conversion to oxirane were studied.The kinetics and thermodynamics of unsaturated FAMEs epoxidation and the kinetics of oxirane cleavage of the epoxidized FAMEs by acetic acid were also studied.The conversion of ethylenic unsaturation group to oxirane, the reaction rate of the conversion to oxirane,and the rate of hydrolysis(oxirane cleavage)were higher by using the IL catalyst.