The inhibition of corrosion of steel in molar hydrochloric acid solution by new synthesized DMI ((3-(3,4-dimethoxyphenyl)isoxazole-5-yl) methanol) compound is studied by weight loss and electrochemical polarizat...The inhibition of corrosion of steel in molar hydrochloric acid solution by new synthesized DMI ((3-(3,4-dimethoxyphenyl)isoxazole-5-yl) methanol) compound is studied by weight loss and electrochemical polarization measurements. The two methods give consistent results. The polarization curves indicate that the DMI compound acts as mixed-type inhibitor. This compound is efficient inhibitor. The inhibition efficiency increases with the increase of inhibitor concentration to reach 96% at 10-3 M for DMI. The temperature effect on the corrosion behavior of steel in 1 M HCI with and without the DMI compound at 10-3 M is studied in the temperature range from 298 to 318 K. The adsorption of inhibitor on the steel surface is found to obey the Frumkin adsorption isotherm model. From the adsorption isotherm, some thermodynamic data for the adsorption process (f, K and △Gads) are calculated and discussed.展开更多
文摘The inhibition of corrosion of steel in molar hydrochloric acid solution by new synthesized DMI ((3-(3,4-dimethoxyphenyl)isoxazole-5-yl) methanol) compound is studied by weight loss and electrochemical polarization measurements. The two methods give consistent results. The polarization curves indicate that the DMI compound acts as mixed-type inhibitor. This compound is efficient inhibitor. The inhibition efficiency increases with the increase of inhibitor concentration to reach 96% at 10-3 M for DMI. The temperature effect on the corrosion behavior of steel in 1 M HCI with and without the DMI compound at 10-3 M is studied in the temperature range from 298 to 318 K. The adsorption of inhibitor on the steel surface is found to obey the Frumkin adsorption isotherm model. From the adsorption isotherm, some thermodynamic data for the adsorption process (f, K and △Gads) are calculated and discussed.