期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
酸渣回收氧化松香生产工艺及减少酸渣的办法 被引量:1
1
作者 刘映进 《林产化工通讯》 2002年第2期19-22,共4页
以浓硫酸为催化剂的聚合松香生产过程中产生大量的酸渣 ,作者从工厂的实际情况出发提出简单的办法 ,可将酸渣中的氧化松香与硫酸分离开来 。
关键词 酸渣回收 氧化松香 工艺 聚合松香 分离
下载PDF
Extraction of vanadium from molten vanadium bearing slag by oxidation with pure oxygen in the presence of CaO 被引量:14
2
作者 宋文臣 李宏 +2 位作者 朱福兴 李昆 郑权 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第8期2687-2694,共8页
A novel process of vanadium extraction from vanadium slag in its molten state was conducted at the laboratory scale by oxidation with pure oxygen in the presence of CaO. The effect of mass ratio of CaO to V2O5 on the ... A novel process of vanadium extraction from vanadium slag in its molten state was conducted at the laboratory scale by oxidation with pure oxygen in the presence of CaO. The effect of mass ratio of CaO to V2O5 on the recovery of vanadium was studied. The sintered samples were leached by H2SO4 solution and characterized by XRD, XPS, SEM and EDS techniques. Compared with the roasting process, the energy saving effect of the proposed process was also discussed. The results showed that vanadium-rich phases were formed and vanadium mainly existed in the forms of CaV2O5 and Ca2V2O7. The formation mechanism of calcium vanadates in the molten vanadium bearing slag was explained. The XRD and XPS results implied that there was a limit to the oxidation reaction of V(IV) to V(V) under the high temperatures even though oxygen-supply was sufficient. An increase in the CaO content led to an increase in the formation of Ca2V2O7. About 90%of the vanadium recovery was obtained under optimal experiment conditions (mass ratio of CaO to V2O5 of 0.6, particle size 120 to 150μm, leaching temperature 90 °C, leaching time 2 h, H2SO4 concentration 20%, liquid to solid ratio 5:1 mL/g, stirring speed 500 r/min). The energy of 1.85×106 kJ could be saved in every 1000 kg of vanadium bearing slag using the proposed process from the theoretical calculation results. Recovery of vanadium from the molten vanadium bearing slag and utilisation of its heat energy are important not only for saving metal resources, but also for energy saving and emission reduction. 展开更多
关键词 molten vanadium bearing slag CAO OXIDATION acid leaching vanadium recovery energy saving effect
下载PDF
Recovery of vanadium from vanadium slag by composite roasting with CaO/MgO and leaching 被引量:14
3
作者 Jun-yi XIANG Xin WANG +2 位作者 Gui-shang PEI Qing-yun HUANG Xue-wei LÜ 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第11期3114-3123,共10页
A novel process of composite roasting with CaO/MgO and subsequent acid leaching was proposed to improve the recovery rate of vanadium from Linz–Donawiz(LD)converter vanadium slag.The effects of the MgO/(CaO+MgO)molar... A novel process of composite roasting with CaO/MgO and subsequent acid leaching was proposed to improve the recovery rate of vanadium from Linz–Donawiz(LD)converter vanadium slag.The effects of the MgO/(CaO+MgO)molar ratio and the roasting and leaching parameters on the recovery of vanadium were studied.The results showed that the leaching efficiency of vanadium decreased from 88%to 81%when CaO was replaced completely by MgO;however,it could be improved by roasting with the composite of CaO/MgO.The maximum vanadium leaching efficiency of 94%was achieved under the optimum MgO/(CaO+MgO)mole ratio of 0.5:1.The results from X-ray diffractometry(XRD)and scanning electron microscopy with energy-dispersive X-ray spectroscopy(SEM−EDS)confirm that the formation rate of acid-soluble vanadates can be enhanced during roasting with the composite of CaO/MgO and that the leaching kinetics can be accelerated owing to the suppression of calcium sulfate precipitation. 展开更多
关键词 VANADIUM vanadium slag ROASTING acid leaching RECOVERY
下载PDF
Lithium and manganese extraction from manganese-rich slag originated from pyrometallurgy of spent lithium-ion battery 被引量:5
4
作者 Guo-xing REN Cai-bin LIAO +1 位作者 Zhi-hong LIU Song-wen XIAO 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第8期2746-2756,共11页
Mn and Li were selectively extracted from the manganese-rich slag by sulfation roasting−water leaching.The extraction mechanisms of Mn and Li were investigated by means of XRD,TG−DSC,and SEM−EDS.73.71%Mn and 73.28%Li ... Mn and Li were selectively extracted from the manganese-rich slag by sulfation roasting−water leaching.The extraction mechanisms of Mn and Li were investigated by means of XRD,TG−DSC,and SEM−EDS.73.71%Mn and 73.28%Li were leached under optimal experimental conditions:acid concentration of 82 wt.%,acid-to-slag mass ratio of 1.5:1,roasting temperature of 800°C,and roasting time of 2 h.During the roasting process,the manganese-rich slag first reacted with concentrated sulfuric acid,producing MnSO_(4),MnSO_(4)·H_(2)O,Li_(2)Mg(SO_(4))_(2),Al_(2)(SO_(4))_(3),and H_(4)SiO_(4).With the roasting temperature increasing,H_(4)SiO_(4) and Al_(2)(SO_(4))_(3) decomposed successively,resulting in generation of mullite and spinel.The mullite formation aided in decreasing the leaching efficiencies of Al and Si,while increasing the Li leaching efficiency.The formation of spinel,however,decreased the leaching efficiencies of Mn and Li. 展开更多
关键词 spent lithium-ion battery manganese-rich slag sulfation roasting manganese recovery lithium recovery
下载PDF
Recovery of magnetite from FeSO_4·7H_2O waste slag by co-precipitation method with calcium hydroxide as precipitant 被引量:3
5
作者 余旺 彭映林 郑雅杰 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第1期62-70,共9页
Proper utilization of the FeSO4·7H2O waste slag generated from TiO2 industry is an urgent need, and Fe3O4 particles are currently being widely used in the wastewater flocculation field. In this work, magnetite wa... Proper utilization of the FeSO4·7H2O waste slag generated from TiO2 industry is an urgent need, and Fe3O4 particles are currently being widely used in the wastewater flocculation field. In this work, magnetite was recovered from ferrous sulphate by a novel co-precipitation method with calcium hydroxide as the precipitant. Under optimum conditions, the obtained spherical magnetite particles are well crystallized with a Fe304 purity of 88.78%, but apt to aggregate with a median particle size of 1.83 μm. Magnetic measurement reveals the obtained Fe304 particles are soft magnetic with a saturation magnetization of 81.73 A-m2/kg. In addition, a highly crystallized gypsum co-product is obtained in blocky or irregular shape. Predictably, this study would provide additional opportunities for future application of low-cost Fe3O4 particles in water treatment field. 展开更多
关键词 FeSO4·7H2O TiO2 industry MAGNETITE CO-PRECIPITATION calcium hydroxide magnetic seeding flocculation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部