Speed of sound data for butyl acetate+benzene, or toluene, or o-xylene, or m-xylene, or p-xylene binary mixtures have been measured over the entire range of mole fraction at 308.15 K. The excess isentropic compressib...Speed of sound data for butyl acetate+benzene, or toluene, or o-xylene, or m-xylene, or p-xylene binary mixtures have been measured over the entire range of mole fraction at 308.15 K. The excess isentropic compressibilities ( Ks^E ) were computed from speed of sound and density data, derived from molar excess volume data. The Ks^E values were analyzed by using graph theoretical approach. The Ks^E values evaluated by graph theory compared reasonably well with their corresponding experimental values. The Ks^E data were also expressed in terms of Redlich-Kister polynomial equation to derive the coefficients and the standard deviation.展开更多
文摘Speed of sound data for butyl acetate+benzene, or toluene, or o-xylene, or m-xylene, or p-xylene binary mixtures have been measured over the entire range of mole fraction at 308.15 K. The excess isentropic compressibilities ( Ks^E ) were computed from speed of sound and density data, derived from molar excess volume data. The Ks^E values were analyzed by using graph theoretical approach. The Ks^E values evaluated by graph theory compared reasonably well with their corresponding experimental values. The Ks^E data were also expressed in terms of Redlich-Kister polynomial equation to derive the coefficients and the standard deviation.