Reactive dividing wall column(RDWC) is a highly integrated unit which combines reaction distillation(RD) with dividing wall column separation technology into one shell, and it realized the chemical reaction and the se...Reactive dividing wall column(RDWC) is a highly integrated unit which combines reaction distillation(RD) with dividing wall column separation technology into one shell, and it realized the chemical reaction and the separation of multiple product fractions simultaneously. In this paper, the reaction of esterification with acetic acid and ethanol to produce ethyl acetate was used as the research system, experiments and simulations of the RDWC were carried out. This system in the traditional process mostly used the homogeneous catalyst(e.g. sulfuric acid). However, in view of the corrosion of the equipment caused by the acidity of the catalyst, we used the heterogeneous catalysts – iron exchange resins – Amberlyst15 and proposed a novel catalyst loading method. Firstly,the reliability of the model of the simulation was verified by the experimental study on the change of liquid split ratio and reflux ratio. After that, the four-column model was established in Aspen Plus to analyze the effects of the amount of azeotropic agent, reflux ratio and acetic acid concentration. Finally, for a fair comparison, the economic analysis was conducted between traditional RD column and RDWC. The results showed that RDWC can save34.7% of total operating costs and 18.5% of TAC.展开更多
Technological advances in the past 30 years have boosted the use of PSM (membrane separation processes), important for its efficiency and flexibility of operation. These processes can be used in many types of separa...Technological advances in the past 30 years have boosted the use of PSM (membrane separation processes), important for its efficiency and flexibility of operation. These processes can be used in many types of separation, with some advantages over the usual separation processes. NF (nanofiltration) is a membrane separation technique, which has properties intermediate between reverse osmosis and ultrafiltration in terms of separated species, because the average of the pores is in the range of 1/2 to 10 nm, and the separation occurs in function of load and size of the species. Usually removes species in solution with an effective diameter of about 1 nm or larger and multivalent ions to a greater extent than monovalent ions. The objective was to study the formation of biofouling on the surface of commercial nanofiltration membrane (Osmonics/GE) and surface membrane synthesized in our laboratory. The study was conducted in permeation system with filtration cell with tangential displacement of 15 bar for 8 days flow. DBNPA (2,2-dibromo-3-nitrilopropionamide) was used as a biocide agent, and an anti-fouling, in concentrations of 5 and 300 ppm, respectively, added to the water coming from the Beach Sea Galleon, RJ. The results demonstrated that there was no change in the flow and rejection of sulphate ions, even in the presence of anti-fouling. The count of aerobic, anaerobic and BRS (sulfate reducing bacteria) in seawater before and after using the DBNPA showed efficiency in controlling these groups of microorganisms and biofouling microbial consortium consisting of the existing in seawater.展开更多
基金Supported by the Project funded by China Postdoctoral Science Foundation(2016M590191)the Key Basic Research Items in Application Basic Research Program of Hebei Province(16964502D)
文摘Reactive dividing wall column(RDWC) is a highly integrated unit which combines reaction distillation(RD) with dividing wall column separation technology into one shell, and it realized the chemical reaction and the separation of multiple product fractions simultaneously. In this paper, the reaction of esterification with acetic acid and ethanol to produce ethyl acetate was used as the research system, experiments and simulations of the RDWC were carried out. This system in the traditional process mostly used the homogeneous catalyst(e.g. sulfuric acid). However, in view of the corrosion of the equipment caused by the acidity of the catalyst, we used the heterogeneous catalysts – iron exchange resins – Amberlyst15 and proposed a novel catalyst loading method. Firstly,the reliability of the model of the simulation was verified by the experimental study on the change of liquid split ratio and reflux ratio. After that, the four-column model was established in Aspen Plus to analyze the effects of the amount of azeotropic agent, reflux ratio and acetic acid concentration. Finally, for a fair comparison, the economic analysis was conducted between traditional RD column and RDWC. The results showed that RDWC can save34.7% of total operating costs and 18.5% of TAC.
文摘Technological advances in the past 30 years have boosted the use of PSM (membrane separation processes), important for its efficiency and flexibility of operation. These processes can be used in many types of separation, with some advantages over the usual separation processes. NF (nanofiltration) is a membrane separation technique, which has properties intermediate between reverse osmosis and ultrafiltration in terms of separated species, because the average of the pores is in the range of 1/2 to 10 nm, and the separation occurs in function of load and size of the species. Usually removes species in solution with an effective diameter of about 1 nm or larger and multivalent ions to a greater extent than monovalent ions. The objective was to study the formation of biofouling on the surface of commercial nanofiltration membrane (Osmonics/GE) and surface membrane synthesized in our laboratory. The study was conducted in permeation system with filtration cell with tangential displacement of 15 bar for 8 days flow. DBNPA (2,2-dibromo-3-nitrilopropionamide) was used as a biocide agent, and an anti-fouling, in concentrations of 5 and 300 ppm, respectively, added to the water coming from the Beach Sea Galleon, RJ. The results demonstrated that there was no change in the flow and rejection of sulphate ions, even in the presence of anti-fouling. The count of aerobic, anaerobic and BRS (sulfate reducing bacteria) in seawater before and after using the DBNPA showed efficiency in controlling these groups of microorganisms and biofouling microbial consortium consisting of the existing in seawater.