分别采用盐酸、草酸、柠檬酸对晶种引导的无模板剂合成的纳米ZSM-5分子筛进行脱铝改性,利用XRD、N2吸附-脱附、27 Al NMR、XRF、NH3-TPD、Py-IR等方法对其进行表征,并考察了不同种类的酸脱铝对ZSM-5分子筛的结构、酸性及其催化萘与甲醇...分别采用盐酸、草酸、柠檬酸对晶种引导的无模板剂合成的纳米ZSM-5分子筛进行脱铝改性,利用XRD、N2吸附-脱附、27 Al NMR、XRF、NH3-TPD、Py-IR等方法对其进行表征,并考察了不同种类的酸脱铝对ZSM-5分子筛的结构、酸性及其催化萘与甲醇的烷基化反应性能的影响。结果表明,盐酸、柠檬酸与草酸均可脱除分子筛的骨架铝和非骨架铝,但3种酸对分子筛的脱铝程度不同。纳米ZSM-5分子筛经酸脱铝后,在脱除了部分强酸中心的同时产生了一定比例的二次介孔,有效地改善了反应物和产物的扩散性能,使催化萘与甲醇的烷基化反应的萘转化率、2,6-二甲基萘(2,6-DMN)选择性和产物中n(2,6-DMN)/n(2,7-DMN)均有不同程度的提高,并且表现出更强的抗失活能力。展开更多
The acetalization and ketalization of various aldehydes and ketones with alcohols by using dealuminated USY(ultrastable Y-type zeolite) as catalyst were studied. The influences of silica/alumina ratio in the catalyst,...The acetalization and ketalization of various aldehydes and ketones with alcohols by using dealuminated USY(ultrastable Y-type zeolite) as catalyst were studied. The influences of silica/alumina ratio in the catalyst, catalyst amount and reaction time on the reaction were investigated. It is showed that the dealuminated USY is a high active catalyst for acetalization and ketaliz ation and its high activity can be readily returned to original by heating at 500 ℃ for 5 hours.展开更多
The synthesis of sodium ferrite and its desulfurization performance in S2 -bearing sodium aluminate solutions were investigated. The thermodynamic analysis shows that the lowest temperature is about 810 K for synthesi...The synthesis of sodium ferrite and its desulfurization performance in S2 -bearing sodium aluminate solutions were investigated. The thermodynamic analysis shows that the lowest temperature is about 810 K for synthesizing sodium ferrite by roasting the mixture of ferric oxide and sodium carbonate. The results indicate that the formation process of sodium ferrite can be completed at 1173 K for 60 min, meanwhile raising temperature and reducing NazCO3 particle size are beneficial to accelerating the formation of sodium ferrite. Sodium ferrite is an efficient desulfurizer to remove the S2- in aluminate solution, and the desulfurization rate can reach approximately 70% at 373 K for 60 min with the molar ratio of iron to sulfur of 1:1-1.5:1. Furthermore, the desulfurization is achieved by NaFeS2·2H2O precipitation through the reaction of Fe(OH)4 and S^2- in aluminate solution, and the desulfurization efficiency relies on the Fe(OH)4^- generated by dissolving sodium ferrite.展开更多
Reaction behaviors of sulfur and iron compounds in sodium aluminate solutions were investigated. The results show that iron compounds can remarkably remove the S2 but cannot get rid of S2Oc2-, SO^2- and SO4^-2 in sodi...Reaction behaviors of sulfur and iron compounds in sodium aluminate solutions were investigated. The results show that iron compounds can remarkably remove the S2 but cannot get rid of S2Oc2-, SO^2- and SO4^-2 in sodium aluminate solutions. The removal efficiency of S^2- using ferrous compound and ferric compound can reach 86.10% and 92.70% respectively when the iron compounds were added with a molar ratio of 2:1 compared with the sulfur in liquors at 100℃. Moreover, several same compounds are formed in those two desulfurization processes with ferrous or ferric compounds, including erdite, hematite, amorphous ferrous sulfide, polymerized sulfur-iron compounds and ferric sulfate. The major difference between these two processes is that the erdite generated from ferrous compounds at the initial reaction stage will convert to a sodium-free product FeS2 at the subsequent stage.展开更多
The liquor concentration, mineral proportion, crystal parameters and micro morphology of various desilication products(DSPs) precipitated in silica-supersaturated sodium aluminate solution at 95 ℃ under different r...The liquor concentration, mineral proportion, crystal parameters and micro morphology of various desilication products(DSPs) precipitated in silica-supersaturated sodium aluminate solution at 95 ℃ under different reaction conditions were systematically researched. The DSPs formed under atmospheric pressure comprise amorphous phase, zeolite A, zeolite and sodalite, and the DSPs concentration and crystallinity increase with the increase of initial silica concentration, initial molar ratio of caustic Na2O to Al2O3(αK) and desilication duration. Decreasing the initial silica concentration, initial αK and increasing the desilication duration can reduce the proportion of zeolite A. The zeolite and sodalite are the stable DSPs, while the precipitation of zeolite A occurs at a high silica-supersaturated state in sodium aluminate solution. The DSPs are precipitated in the form of agglomerates, but the morphologies of various DSPs are quite different. Both the molar ratios of Na2O to Al2O3 and SiO-2 to Al2O3 in DSPs increase with the increasing desilication duration, resulting in the increase of the cell volumes of various DSPs. The precipitation sequence of DSPs under atmospheric pressure is: amorphous phase→zeolite A→zeolite→sodalite.展开更多
Composite structures of ZSM‐5 zeolites were prepared by the synthesis of mesopores and mi‐cropores using carbon nanotubes as a template. Dealumination of mesopores was performed selec‐tively using trichloroacetic a...Composite structures of ZSM‐5 zeolites were prepared by the synthesis of mesopores and mi‐cropores using carbon nanotubes as a template. Dealumination of mesopores was performed selec‐tively using trichloroacetic acid, which could only diffuse into the mesopores and not the mi‐cropores owing to the size of the trichloroacetic acid molecules. Empty spaces are created in the catalyst as a result of removal of the Al atoms from the zeolite structure. If Si atoms fill the empty space, then the structure of the mesopores becomes similar to silicates, which do not have any cata‐lytic properties. Silicon containing solution was used to fill the empty spaces, and in doing so, a unique method was developed, by which silicon atoms can directly replace the extracted Al atoms from the mesopore structure. Therefore, by changing the geometry and properties of the mesopores and micropores, the amount of coke reduced from 14%for HZSM‐5 to 3%for the modified zeolite.展开更多
The structural changes of silicate anions in the desilication process with the addition of calcium hydrate alumino-carbonate were studied by measuring Raman spectra, infrared spectra and corresponding second derivativ...The structural changes of silicate anions in the desilication process with the addition of calcium hydrate alumino-carbonate were studied by measuring Raman spectra, infrared spectra and corresponding second derivative spectra. The results show that the desilication ratio in the solution prepared by the addition of sodium silicate(solution-SS) is much greater than that in the solution by the addition of green liquor(solution-GL), and low alumina concentration in the sodium aluminate solutions facilitates the desilication process. It is also shown that alumino-silicate anions in the solution-GL, and Q^3 polymeric silicate anions in solution-SS are predominant, respectively. In addition, increasing the concentration of silica favors respectively the formation of the alumino-silicate or the Q^3 silicate anions in the solution-GL or the solution-SS. Therefore, it can be inferred that the low desilication ratio in the silicate-bearing aluminate solution is mainly attributed to the existence of alumino-silicate anions.展开更多
Several methods of deep desulfurization in alumina production process were studied, and the costs of these methods were compared. It is found that most of the S2- in sodium aluminate solution can be removed by adding ...Several methods of deep desulfurization in alumina production process were studied, and the costs of these methods were compared. It is found that most of the S2- in sodium aluminate solution can be removed by adding sodium nitrate or hydrogen peroxide in digestion process, and in this way the effect of S2- on alumina product quality is eliminated. However, the removal efficiency of 2?32OS in sodium aluminate solution is very low by this method. Both S2- and 2?32OS in sodium aluminate solution can be removed completely by wet oxidation method in digestion process. The cost of desulfurization by wet oxidation is lower than by adding sodium nitrate or hydrogen peroxide. The results of this research reveal that wet oxidation is an economical and feasible method for the removal of sulfur in alumina production process to improve alumina quality, and provide valuable guidelines for alumina production by high-sulfur bauxite.展开更多
The realuminated H-mordenite catalysts (HM1-4) treated with different concentrations of NaOH and NaAlO2 aqueous solutions were prepared, and characterized by inductively coupled plasma (ICP), X-ray diffraction (...The realuminated H-mordenite catalysts (HM1-4) treated with different concentrations of NaOH and NaAlO2 aqueous solutions were prepared, and characterized by inductively coupled plasma (ICP), X-ray diffraction (XRD), Fourier transform-infrared spectroscopy (FT-IR) and temperature-programmed desorption of ammonia, They are of lower Si/AI ratio and higher acid amount while keeping a high relative crystallinity. Their catalytic performances were evaluated with the liquid-phase tert-butylation of toluene with tert-butyl alcohol in a 100 ml stainless steel batch reactor equipped with a stirrer. HM2 zeolite catalyst, obtained by treating HM in 0.1 mol.L-1 NaOH followed by 0.05 mol·L^-1 NaAlO2 aqueous solution, shows a higher catalytic activity because of its highest acid amount. For HM2 catalyst the influences of reaction conditions on catalytic performance were investigated. The conversion of toluene is 50.3% and the selectivity ofp-tert-butyltoluene is 74.7% at a temperature of 180℃, 2 of molar ratio of tert-butyl alcohol to toluene, 4h of reaction time and 0.2 of M(catalyst)/M(toluene).展开更多
文摘分别采用盐酸、草酸、柠檬酸对晶种引导的无模板剂合成的纳米ZSM-5分子筛进行脱铝改性,利用XRD、N2吸附-脱附、27 Al NMR、XRF、NH3-TPD、Py-IR等方法对其进行表征,并考察了不同种类的酸脱铝对ZSM-5分子筛的结构、酸性及其催化萘与甲醇的烷基化反应性能的影响。结果表明,盐酸、柠檬酸与草酸均可脱除分子筛的骨架铝和非骨架铝,但3种酸对分子筛的脱铝程度不同。纳米ZSM-5分子筛经酸脱铝后,在脱除了部分强酸中心的同时产生了一定比例的二次介孔,有效地改善了反应物和产物的扩散性能,使催化萘与甲醇的烷基化反应的萘转化率、2,6-二甲基萘(2,6-DMN)选择性和产物中n(2,6-DMN)/n(2,7-DMN)均有不同程度的提高,并且表现出更强的抗失活能力。
文摘The acetalization and ketalization of various aldehydes and ketones with alcohols by using dealuminated USY(ultrastable Y-type zeolite) as catalyst were studied. The influences of silica/alumina ratio in the catalyst, catalyst amount and reaction time on the reaction were investigated. It is showed that the dealuminated USY is a high active catalyst for acetalization and ketaliz ation and its high activity can be readily returned to original by heating at 500 ℃ for 5 hours.
基金Project(51374239)supported by the National Natural Science Foundation of China
文摘The synthesis of sodium ferrite and its desulfurization performance in S2 -bearing sodium aluminate solutions were investigated. The thermodynamic analysis shows that the lowest temperature is about 810 K for synthesizing sodium ferrite by roasting the mixture of ferric oxide and sodium carbonate. The results indicate that the formation process of sodium ferrite can be completed at 1173 K for 60 min, meanwhile raising temperature and reducing NazCO3 particle size are beneficial to accelerating the formation of sodium ferrite. Sodium ferrite is an efficient desulfurizer to remove the S2- in aluminate solution, and the desulfurization rate can reach approximately 70% at 373 K for 60 min with the molar ratio of iron to sulfur of 1:1-1.5:1. Furthermore, the desulfurization is achieved by NaFeS2·2H2O precipitation through the reaction of Fe(OH)4 and S^2- in aluminate solution, and the desulfurization efficiency relies on the Fe(OH)4^- generated by dissolving sodium ferrite.
基金Project(51374239)supported by the National Natural Science Foundation of China
文摘Reaction behaviors of sulfur and iron compounds in sodium aluminate solutions were investigated. The results show that iron compounds can remarkably remove the S2 but cannot get rid of S2Oc2-, SO^2- and SO4^-2 in sodium aluminate solutions. The removal efficiency of S^2- using ferrous compound and ferric compound can reach 86.10% and 92.70% respectively when the iron compounds were added with a molar ratio of 2:1 compared with the sulfur in liquors at 100℃. Moreover, several same compounds are formed in those two desulfurization processes with ferrous or ferric compounds, including erdite, hematite, amorphous ferrous sulfide, polymerized sulfur-iron compounds and ferric sulfate. The major difference between these two processes is that the erdite generated from ferrous compounds at the initial reaction stage will convert to a sodium-free product FeS2 at the subsequent stage.
基金Projects(51774079,51674075,51104041)supported by the National Natural Science Foundation of ChinaProject(N130402010)supported by the Fundamental Research Funds for the Central Universities,China
文摘The liquor concentration, mineral proportion, crystal parameters and micro morphology of various desilication products(DSPs) precipitated in silica-supersaturated sodium aluminate solution at 95 ℃ under different reaction conditions were systematically researched. The DSPs formed under atmospheric pressure comprise amorphous phase, zeolite A, zeolite and sodalite, and the DSPs concentration and crystallinity increase with the increase of initial silica concentration, initial molar ratio of caustic Na2O to Al2O3(αK) and desilication duration. Decreasing the initial silica concentration, initial αK and increasing the desilication duration can reduce the proportion of zeolite A. The zeolite and sodalite are the stable DSPs, while the precipitation of zeolite A occurs at a high silica-supersaturated state in sodium aluminate solution. The DSPs are precipitated in the form of agglomerates, but the morphologies of various DSPs are quite different. Both the molar ratios of Na2O to Al2O3 and SiO-2 to Al2O3 in DSPs increase with the increasing desilication duration, resulting in the increase of the cell volumes of various DSPs. The precipitation sequence of DSPs under atmospheric pressure is: amorphous phase→zeolite A→zeolite→sodalite.
基金partly supported by the International Science Foundation~~
文摘Composite structures of ZSM‐5 zeolites were prepared by the synthesis of mesopores and mi‐cropores using carbon nanotubes as a template. Dealumination of mesopores was performed selec‐tively using trichloroacetic acid, which could only diffuse into the mesopores and not the mi‐cropores owing to the size of the trichloroacetic acid molecules. Empty spaces are created in the catalyst as a result of removal of the Al atoms from the zeolite structure. If Si atoms fill the empty space, then the structure of the mesopores becomes similar to silicates, which do not have any cata‐lytic properties. Silicon containing solution was used to fill the empty spaces, and in doing so, a unique method was developed, by which silicon atoms can directly replace the extracted Al atoms from the mesopore structure. Therefore, by changing the geometry and properties of the mesopores and micropores, the amount of coke reduced from 14%for HZSM‐5 to 3%for the modified zeolite.
基金Project(51274242)supported by the National Natural Science Foundation of ChinaProject(2015CX001)supported by the Innovation-driven Plan in Central South University,China
文摘The structural changes of silicate anions in the desilication process with the addition of calcium hydrate alumino-carbonate were studied by measuring Raman spectra, infrared spectra and corresponding second derivative spectra. The results show that the desilication ratio in the solution prepared by the addition of sodium silicate(solution-SS) is much greater than that in the solution by the addition of green liquor(solution-GL), and low alumina concentration in the sodium aluminate solutions facilitates the desilication process. It is also shown that alumino-silicate anions in the solution-GL, and Q^3 polymeric silicate anions in solution-SS are predominant, respectively. In addition, increasing the concentration of silica favors respectively the formation of the alumino-silicate or the Q^3 silicate anions in the solution-GL or the solution-SS. Therefore, it can be inferred that the low desilication ratio in the silicate-bearing aluminate solution is mainly attributed to the existence of alumino-silicate anions.
基金Project(51404121)supported by the National Natural Science Foundation of ChinaProject(KKSY201452041)supported by Yunnan Provincal Personnel Training Funds for Kunming University of Science and Technology,China
文摘Several methods of deep desulfurization in alumina production process were studied, and the costs of these methods were compared. It is found that most of the S2- in sodium aluminate solution can be removed by adding sodium nitrate or hydrogen peroxide in digestion process, and in this way the effect of S2- on alumina product quality is eliminated. However, the removal efficiency of 2?32OS in sodium aluminate solution is very low by this method. Both S2- and 2?32OS in sodium aluminate solution can be removed completely by wet oxidation method in digestion process. The cost of desulfurization by wet oxidation is lower than by adding sodium nitrate or hydrogen peroxide. The results of this research reveal that wet oxidation is an economical and feasible method for the removal of sulfur in alumina production process to improve alumina quality, and provide valuable guidelines for alumina production by high-sulfur bauxite.
基金Supported by Major Basic Research Project of Natural Science Foundation of Jiangsu Province Colleges (07KJA53013)
文摘The realuminated H-mordenite catalysts (HM1-4) treated with different concentrations of NaOH and NaAlO2 aqueous solutions were prepared, and characterized by inductively coupled plasma (ICP), X-ray diffraction (XRD), Fourier transform-infrared spectroscopy (FT-IR) and temperature-programmed desorption of ammonia, They are of lower Si/AI ratio and higher acid amount while keeping a high relative crystallinity. Their catalytic performances were evaluated with the liquid-phase tert-butylation of toluene with tert-butyl alcohol in a 100 ml stainless steel batch reactor equipped with a stirrer. HM2 zeolite catalyst, obtained by treating HM in 0.1 mol.L-1 NaOH followed by 0.05 mol·L^-1 NaAlO2 aqueous solution, shows a higher catalytic activity because of its highest acid amount. For HM2 catalyst the influences of reaction conditions on catalytic performance were investigated. The conversion of toluene is 50.3% and the selectivity ofp-tert-butyltoluene is 74.7% at a temperature of 180℃, 2 of molar ratio of tert-butyl alcohol to toluene, 4h of reaction time and 0.2 of M(catalyst)/M(toluene).