Cu nanoparticles supported on a variety of oxide supports, including SiO2, TiO2, ZrO2, Al2O3, MgO and ZnO, were investigated for the hydrogenolysis of biomass‐derived furfuryl alcohol to1,2‐pentanediol and 1,5‐pent...Cu nanoparticles supported on a variety of oxide supports, including SiO2, TiO2, ZrO2, Al2O3, MgO and ZnO, were investigated for the hydrogenolysis of biomass‐derived furfuryl alcohol to1,2‐pentanediol and 1,5‐pentanediol. A Cu‐Al2O3 catalyst with 10 wt% Cu loading prepared by a co‐precipitation method exhibited the best performance in terms of producing pentanediols compared with the other materials. This catalyst generated an 85.8% conversion and a 70.3% combined selectivity for the target pentanediols at 413 K and 8 MPa H2 over an 8‐h reaction. The catalyst could also be recycled over repeated reaction trials without any significant decrease in productivity. Characterizations with X‐ray diffraction, NH3/CO2‐temperature programmed desorption, N2 adsorption,transmission electron microscopy and N2 O chemisorption demonstrated that intimate and effective interactions between Cu particles and the acidic Al2O3 support in this material greatly enhanced its activity and selectivity. The promotion of the hydrogenolysis reaction was found to be especially sensitive to the Cu particle size, and the catalyst with Cu particles 1.9 to 2.4 nm in size showed the highest turnover frequency during the synthesis of pentanediols.展开更多
A series of Mg‐Al mixed oxide catalysts are prepared and introduced as efficient irreducible catalysts for the oxidative coupling of alcohols and amines to imine.The structure and surface properties of Mg‐Al oxides ...A series of Mg‐Al mixed oxide catalysts are prepared and introduced as efficient irreducible catalysts for the oxidative coupling of alcohols and amines to imine.The structure and surface properties of Mg‐Al oxides are modulated by changing the Mg/Al ratios,calcination temperature and treatment with probe molecules.Detailed characterization,including X‐ray diffraction,27Al magic angle spinning nuclear magnetic resonance spectroscopy,N2‐adsorption,NH3‐temperature‐programmed desorption,CO2‐temperature‐programmed desorption and X‐ray photoelectron spectroscopy are carried out to determine the physicochemical properties of these catalysts.The Mg‐Al oxides with Mg/Al=3exhibit the highest activity in the reaction,which possess a large number of surface weak basic sites and a relatively small number of weak acidic sites.The role of the acidic and basic sites in the reaction process is systematically investigated,and are shown to serve as adsorption and activation sites for amines and alcohols,respectively.Under the synergistic effect of these acid‐base centers,the oxidative coupling process successfully occurs on the surface of Mg‐Al mixed oxides.Compared with the acidic sites,the weak basic sites play a more important role in the catalytic process.The acidic sites are the catalytic centers for the benzyl alcohol activation,which control the reaction rate of the oxidative coupling reaction.展开更多
Zr‐Al mixed oxide supported Pt catalysts with different Zr/Al mole ratios(2.5%Pt/ZrxAl(1–x)Oy) were synthesized by an impregnation method and used for the selective hydrogenolysis of glycerol to n‐propanol in a...Zr‐Al mixed oxide supported Pt catalysts with different Zr/Al mole ratios(2.5%Pt/ZrxAl(1–x)Oy) were synthesized by an impregnation method and used for the selective hydrogenolysis of glycerol to n‐propanol in an autoclave reactor. The catalysts were fully characterized by X‐ray powder diffrac‐tion, Brunauer‐Emmett‐Teller surface area analysis, CO chemisorption, H2 temperature‐ pro‐grammed reduction, pyridine‐infrared spectroscopy, and NH3‐temperature‐programmed desorp‐tion. The results revealed that the Zr/Al ratio on the support significantly affected the size of the platinum particles and the properties of the acid sites on the catalysts. The catalytic performance was well correlated with the acidic properties of the catalyst; specifically, more acid sites contrib‐uted to the conversion and strong acid sites with a specific intensity contributed to the deep dehy‐dration of glycerol to form n‐propanol. Among the tested catalysts, 2.5 wt% Pt/Zr(0.7)Al(0.3)Oy exhibited excellent selectivity for n‐propanol with 81.2% glycerol conversion at 240 °C and 6.0 MPa H2 pres‐sure when 10% aqueous glycerol solution was used as the substrate. In addition, the effect of vari‐ous reaction parameters, such as H2 content, reaction temperature, reaction time, and number of experimental cycles were studied to determine the optimized reaction conditions and to evaluate the stability of the catalyst.展开更多
A series of Zn–Ca–Al oxides with different CaO and ZnO contents have been prepared and evaluated in the synthesis of propylene carbonate(PC) from 1,2-propylene glycol(PG) and urea in a batch reactor. The effect of c...A series of Zn–Ca–Al oxides with different CaO and ZnO contents have been prepared and evaluated in the synthesis of propylene carbonate(PC) from 1,2-propylene glycol(PG) and urea in a batch reactor. The effect of catalyst composition, basicity and reaction process parameters such as temperature, catalyst dose, molar ratio of PG to urea, purge gas flow and reaction time has been studied to find suitable reaction conditions for the PC synthesis. The PC selectivity and yield under the desired conditions could reach 98.4% and 90.8%, respectively. The best performing catalyst also exhibited a good reusability without appreciable loss in the PC selectivity and yield after five consecutive reaction runs. In addition, a stepwise reaction pathway involving a 2-hydroxypropyl carbamate intermediate was proposed for the urea alcoholysis to PC in the presence of Zn–Ca–Al catalysts, according to the time dependences of reaction intermediates and products.展开更多
The pH dependence of the extrapolated shear yield stress for Alcoa A16 a-Al2O3 suspensions at the powder volume fraction of 0.27 with and without addition of both polyvinyl alcohol (PVA) and polyethylene glycol (PEG) ...The pH dependence of the extrapolated shear yield stress for Alcoa A16 a-Al2O3 suspensions at the powder volume fraction of 0.27 with and without addition of both polyvinyl alcohol (PVA) and polyethylene glycol (PEG) each at fixed 0.18% of the powder mass was studied. With the polymer added, the full deflocculation of the suspension shifts from about pH=4 to around pH=1.5, at which the minimum value of shear yield stress is higher than that at pH=4. The addition of both PVA and PEG was found to prevent the filter cake from cracking.展开更多
Identification of the catalyst characteristics correlating with the key performance parameters including selectivity and stability is key to the rational catalyst design. Herein we focused on the identification of pro...Identification of the catalyst characteristics correlating with the key performance parameters including selectivity and stability is key to the rational catalyst design. Herein we focused on the identification of property-performance relationships in the methanol-to-olefin(MTO) process by studying in detail the catalytic behaviour of MFI, MEL and their respective intergrowth zeolites. The detailed material characterization reveals that both the high production of propylene and butylenes and the large Me OH conversion capacity correlate with the enrichment of lattice Al sites in the channels of the pentasil structure as identified by 27 Al MAS NMR and 3-methylpentane cracking results. The lack of correlation between MTO performance and other catalyst characteristics, such as crystal size, presence of external Brønsted acid sites and Al pairing suggests their less pronounced role in defining the propylene selectivity. Our analysis reveals that catalyst deactivation is rather complex and is strongly affected by the enrichment of lattice Al in the intersections, the overall Al-content, and crystal size. The intergrowth of MFI and MEL phases accelerates the catalyst deactivation rate.展开更多
A polyaluminium chloride solution with high Al 13 content self-prepared was used as material for preparing the spherical γ-Al 2 O 3 by the sol-gel and oil-drop method. Polyethylene glycol with different molecular mas...A polyaluminium chloride solution with high Al 13 content self-prepared was used as material for preparing the spherical γ-Al 2 O 3 by the sol-gel and oil-drop method. Polyethylene glycol with different molecular mass was used as surfactant to investigate the effect on property of γ-Al 2 O 3 . The physical property was characterized by 27 Al NMR (nuclear magnetic resonance) spectra, X-ray diffraction, FT-IR (Fourier transform infrared spectroscopy) and TG-DTA (thermogravimetric-differential thermal analysis). The results showed that surface area, pore volume and pore size of γ-Al 2 O 3 all increased with the increase of polyethylene glycol molecular mass in the experimental research range, and polyethylene glycol 10000 was the most suitable pore forming additive. γ-Al 2 O 3 with surface area of 339 m 2 ·g 1 , pore volume of 0.59 cm 3 ·g 1 and pore diameter of 6.9 nm were obtained at 450 °C.展开更多
This study aimed to investigate the chemical constituents from the flowers of Dendrobium chrysanthum and determine its bioactive compounds. [Method] The compounds were extracted by 95% alcohol and isolated by column c...This study aimed to investigate the chemical constituents from the flowers of Dendrobium chrysanthum and determine its bioactive compounds. [Method] The compounds were extracted by 95% alcohol and isolated by column chromatography on silica gel and Sephadex LH-20. Their structures were identified by spectroscopic analysis (1H NMR, 13CNMR and ElMS). [Result] Nine compounds were obtained and identified as stigmasterol , β-sitosterol , linoleic acid , stigmast-4-en-3-one , dibutyl phthalate , moscatilin , ergosterol , ergosterol peroxide and daucosterol . [Conclusion] Al compounds were isolated from its flowers for the first time.展开更多
基金supported by the National Natural Science Foundation of China(2113301121203221+1 种基金21473224)the Natural Science Foundation of Gansu Province(1308RJZA281)~~
文摘Cu nanoparticles supported on a variety of oxide supports, including SiO2, TiO2, ZrO2, Al2O3, MgO and ZnO, were investigated for the hydrogenolysis of biomass‐derived furfuryl alcohol to1,2‐pentanediol and 1,5‐pentanediol. A Cu‐Al2O3 catalyst with 10 wt% Cu loading prepared by a co‐precipitation method exhibited the best performance in terms of producing pentanediols compared with the other materials. This catalyst generated an 85.8% conversion and a 70.3% combined selectivity for the target pentanediols at 413 K and 8 MPa H2 over an 8‐h reaction. The catalyst could also be recycled over repeated reaction trials without any significant decrease in productivity. Characterizations with X‐ray diffraction, NH3/CO2‐temperature programmed desorption, N2 adsorption,transmission electron microscopy and N2 O chemisorption demonstrated that intimate and effective interactions between Cu particles and the acidic Al2O3 support in this material greatly enhanced its activity and selectivity. The promotion of the hydrogenolysis reaction was found to be especially sensitive to the Cu particle size, and the catalyst with Cu particles 1.9 to 2.4 nm in size showed the highest turnover frequency during the synthesis of pentanediols.
文摘A series of Mg‐Al mixed oxide catalysts are prepared and introduced as efficient irreducible catalysts for the oxidative coupling of alcohols and amines to imine.The structure and surface properties of Mg‐Al oxides are modulated by changing the Mg/Al ratios,calcination temperature and treatment with probe molecules.Detailed characterization,including X‐ray diffraction,27Al magic angle spinning nuclear magnetic resonance spectroscopy,N2‐adsorption,NH3‐temperature‐programmed desorption,CO2‐temperature‐programmed desorption and X‐ray photoelectron spectroscopy are carried out to determine the physicochemical properties of these catalysts.The Mg‐Al oxides with Mg/Al=3exhibit the highest activity in the reaction,which possess a large number of surface weak basic sites and a relatively small number of weak acidic sites.The role of the acidic and basic sites in the reaction process is systematically investigated,and are shown to serve as adsorption and activation sites for amines and alcohols,respectively.Under the synergistic effect of these acid‐base centers,the oxidative coupling process successfully occurs on the surface of Mg‐Al mixed oxides.Compared with the acidic sites,the weak basic sites play a more important role in the catalytic process.The acidic sites are the catalytic centers for the benzyl alcohol activation,which control the reaction rate of the oxidative coupling reaction.
基金supported by the National Natural Science Foundation of China (21573031, 21373038)the Program for Excellent Talents in Dalian City (2016RD09)the Doctoral Scientific Research Foundation of Liao Ning Province (20170520395)~~
文摘Zr‐Al mixed oxide supported Pt catalysts with different Zr/Al mole ratios(2.5%Pt/ZrxAl(1–x)Oy) were synthesized by an impregnation method and used for the selective hydrogenolysis of glycerol to n‐propanol in an autoclave reactor. The catalysts were fully characterized by X‐ray powder diffrac‐tion, Brunauer‐Emmett‐Teller surface area analysis, CO chemisorption, H2 temperature‐ pro‐grammed reduction, pyridine‐infrared spectroscopy, and NH3‐temperature‐programmed desorp‐tion. The results revealed that the Zr/Al ratio on the support significantly affected the size of the platinum particles and the properties of the acid sites on the catalysts. The catalytic performance was well correlated with the acidic properties of the catalyst; specifically, more acid sites contrib‐uted to the conversion and strong acid sites with a specific intensity contributed to the deep dehy‐dration of glycerol to form n‐propanol. Among the tested catalysts, 2.5 wt% Pt/Zr(0.7)Al(0.3)Oy exhibited excellent selectivity for n‐propanol with 81.2% glycerol conversion at 240 °C and 6.0 MPa H2 pres‐sure when 10% aqueous glycerol solution was used as the substrate. In addition, the effect of vari‐ous reaction parameters, such as H2 content, reaction temperature, reaction time, and number of experimental cycles were studied to determine the optimized reaction conditions and to evaluate the stability of the catalyst.
基金Supported by the Changcheng Scholars Program of Beijing(CIT&TCD 20150316)
文摘A series of Zn–Ca–Al oxides with different CaO and ZnO contents have been prepared and evaluated in the synthesis of propylene carbonate(PC) from 1,2-propylene glycol(PG) and urea in a batch reactor. The effect of catalyst composition, basicity and reaction process parameters such as temperature, catalyst dose, molar ratio of PG to urea, purge gas flow and reaction time has been studied to find suitable reaction conditions for the PC synthesis. The PC selectivity and yield under the desired conditions could reach 98.4% and 90.8%, respectively. The best performing catalyst also exhibited a good reusability without appreciable loss in the PC selectivity and yield after five consecutive reaction runs. In addition, a stepwise reaction pathway involving a 2-hydroxypropyl carbamate intermediate was proposed for the urea alcoholysis to PC in the presence of Zn–Ca–Al catalysts, according to the time dependences of reaction intermediates and products.
文摘The pH dependence of the extrapolated shear yield stress for Alcoa A16 a-Al2O3 suspensions at the powder volume fraction of 0.27 with and without addition of both polyvinyl alcohol (PVA) and polyethylene glycol (PEG) each at fixed 0.18% of the powder mass was studied. With the polymer added, the full deflocculation of the suspension shifts from about pH=4 to around pH=1.5, at which the minimum value of shear yield stress is higher than that at pH=4. The addition of both PVA and PEG was found to prevent the filter cake from cracking.
基金supported by the BASF and the Advanced Research Center Chemical Building Blocks Consortium (ARC CBBC) for Funding under Project (2016.007.TUD)
文摘Identification of the catalyst characteristics correlating with the key performance parameters including selectivity and stability is key to the rational catalyst design. Herein we focused on the identification of property-performance relationships in the methanol-to-olefin(MTO) process by studying in detail the catalytic behaviour of MFI, MEL and their respective intergrowth zeolites. The detailed material characterization reveals that both the high production of propylene and butylenes and the large Me OH conversion capacity correlate with the enrichment of lattice Al sites in the channels of the pentasil structure as identified by 27 Al MAS NMR and 3-methylpentane cracking results. The lack of correlation between MTO performance and other catalyst characteristics, such as crystal size, presence of external Brønsted acid sites and Al pairing suggests their less pronounced role in defining the propylene selectivity. Our analysis reveals that catalyst deactivation is rather complex and is strongly affected by the enrichment of lattice Al in the intersections, the overall Al-content, and crystal size. The intergrowth of MFI and MEL phases accelerates the catalyst deactivation rate.
基金Supported by the National Natural Science Foundation of China (21076219)the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry (ITLXHG2009071702)
文摘A polyaluminium chloride solution with high Al 13 content self-prepared was used as material for preparing the spherical γ-Al 2 O 3 by the sol-gel and oil-drop method. Polyethylene glycol with different molecular mass was used as surfactant to investigate the effect on property of γ-Al 2 O 3 . The physical property was characterized by 27 Al NMR (nuclear magnetic resonance) spectra, X-ray diffraction, FT-IR (Fourier transform infrared spectroscopy) and TG-DTA (thermogravimetric-differential thermal analysis). The results showed that surface area, pore volume and pore size of γ-Al 2 O 3 all increased with the increase of polyethylene glycol molecular mass in the experimental research range, and polyethylene glycol 10000 was the most suitable pore forming additive. γ-Al 2 O 3 with surface area of 339 m 2 ·g 1 , pore volume of 0.59 cm 3 ·g 1 and pore diameter of 6.9 nm were obtained at 450 °C.
基金Supported by the National Natural Science Foundation of China(21202066)the Natural Science Foundation of Yunnan Province,China(2012FB156)+1 种基金the Scientific Research Foundation of Department of Education of Yunnan Province,China(2013C247)the Open Research Foundation of Yunnan Key Laboratory of Pharmacology for Natural Products(2013G009)
文摘This study aimed to investigate the chemical constituents from the flowers of Dendrobium chrysanthum and determine its bioactive compounds. [Method] The compounds were extracted by 95% alcohol and isolated by column chromatography on silica gel and Sephadex LH-20. Their structures were identified by spectroscopic analysis (1H NMR, 13CNMR and ElMS). [Result] Nine compounds were obtained and identified as stigmasterol , β-sitosterol , linoleic acid , stigmast-4-en-3-one , dibutyl phthalate , moscatilin , ergosterol , ergosterol peroxide and daucosterol . [Conclusion] Al compounds were isolated from its flowers for the first time.