Lithium-ion conductor Liz.3Alo.3Ti1.7(P04)3 with an ultrapure NASICON-type phase is syn- thesized by a 1,2-propylene glycol (1,2-PG)-assisted sol-gel method and characterized by differential thermal analysis-therm...Lithium-ion conductor Liz.3Alo.3Ti1.7(P04)3 with an ultrapure NASICON-type phase is syn- thesized by a 1,2-propylene glycol (1,2-PG)-assisted sol-gel method and characterized by differential thermal analysis-thermo gravimetric analysis, X-ray diffraction, scanning elec- tron microscopy, electrochemical impedance spectroscopy, and chronoamperornetry test. Due to the use of 1,2-PG, a homogeneous and light yellow transparent precursor solu- tion is obtained without the precipitation of Ti4+ and A13+ with PO43- Well crystallized Lil.3Alo.3Til.7(PO4)3 can be prepared at much lower temperatures from 850 ~C to 950 ~C within a shorter synthesis time compared with that prepared at a temperature above 1000 ~C by a conventional solid-state reaction method. The lithium ionic conductivity of the sintered pellets is up to 0.3 mS/cm at 50 ℃ with an activation energy as low as 36.6 k J/tool for the specimen pre-sintered at 700 ℃ and sintered at 850 ℃. The high conductivity, good chemi- cal stability and easy fabrication of the Li1.3Al0.3Ti1.7(PO4)a provide a promising candidate as solid electrolyte for all-solid-state Li-ion rechargeable batteries.展开更多
Human muscles are notably toughened or softened with specific inorganic ions.Inspired by this phenomenon,herein we report a simple strategy to endow hydrogels with comparable ion-responsive mechanical properties by tr...Human muscles are notably toughened or softened with specific inorganic ions.Inspired by this phenomenon,herein we report a simple strategy to endow hydrogels with comparable ion-responsive mechanical properties by treating the gels with different ionic solutions.Semi-crystalline poly(vinyl alcohol)hydrogels are chosen as examples to illustrate this concept.Similar to muscles,the mechanical property of hydrogels demonstrates strong dependence on both the nature and concentration of inorganic ions.Immersed at the same salt concentration,the hydrogels treated with different ionic solutions manifest a broad-range tunability in rigidity(Young’s modulus from 0.16 to 9.6 MPa),extensibility(elongation ratio from 100% to 570%),and toughness(fracture work from 0.82 to 35 MJm^(-3)).The mechanical property well follows the Hofmeister series,where the“salting-out”salts(kosmotropes)have a more pronounced effect on the reinforcement of the hydrogels.Besides,the hydrogels’mechanical performance exhibits a positive correlation with the salt concentration.Furthermore,it is revealed both the polymer solubility from amorphous domains and polymer crystallinity from crystalline domains are significantly influenced by the ions,which synergistically contribute to the salt-responsive mechanical performance.Benefitting from this feature,the hydrogels have demonstrated promising industrial applications,including tunable tough engineering soft materials,anti-icing coatings,and soft electronic devices.展开更多
文摘Lithium-ion conductor Liz.3Alo.3Ti1.7(P04)3 with an ultrapure NASICON-type phase is syn- thesized by a 1,2-propylene glycol (1,2-PG)-assisted sol-gel method and characterized by differential thermal analysis-thermo gravimetric analysis, X-ray diffraction, scanning elec- tron microscopy, electrochemical impedance spectroscopy, and chronoamperornetry test. Due to the use of 1,2-PG, a homogeneous and light yellow transparent precursor solu- tion is obtained without the precipitation of Ti4+ and A13+ with PO43- Well crystallized Lil.3Alo.3Til.7(PO4)3 can be prepared at much lower temperatures from 850 ~C to 950 ~C within a shorter synthesis time compared with that prepared at a temperature above 1000 ~C by a conventional solid-state reaction method. The lithium ionic conductivity of the sintered pellets is up to 0.3 mS/cm at 50 ℃ with an activation energy as low as 36.6 k J/tool for the specimen pre-sintered at 700 ℃ and sintered at 850 ℃. The high conductivity, good chemi- cal stability and easy fabrication of the Li1.3Al0.3Ti1.7(PO4)a provide a promising candidate as solid electrolyte for all-solid-state Li-ion rechargeable batteries.
基金supported by the National Natural Science Foundation of China(51903253)the Natural Science Foundation of Guangdong Province of China(2019A1515011150 and 2019A1515011258)the Science and Technology Development Fund of Macao(FDCT 0083/2019/A2).
文摘Human muscles are notably toughened or softened with specific inorganic ions.Inspired by this phenomenon,herein we report a simple strategy to endow hydrogels with comparable ion-responsive mechanical properties by treating the gels with different ionic solutions.Semi-crystalline poly(vinyl alcohol)hydrogels are chosen as examples to illustrate this concept.Similar to muscles,the mechanical property of hydrogels demonstrates strong dependence on both the nature and concentration of inorganic ions.Immersed at the same salt concentration,the hydrogels treated with different ionic solutions manifest a broad-range tunability in rigidity(Young’s modulus from 0.16 to 9.6 MPa),extensibility(elongation ratio from 100% to 570%),and toughness(fracture work from 0.82 to 35 MJm^(-3)).The mechanical property well follows the Hofmeister series,where the“salting-out”salts(kosmotropes)have a more pronounced effect on the reinforcement of the hydrogels.Besides,the hydrogels’mechanical performance exhibits a positive correlation with the salt concentration.Furthermore,it is revealed both the polymer solubility from amorphous domains and polymer crystallinity from crystalline domains are significantly influenced by the ions,which synergistically contribute to the salt-responsive mechanical performance.Benefitting from this feature,the hydrogels have demonstrated promising industrial applications,including tunable tough engineering soft materials,anti-icing coatings,and soft electronic devices.