The partial genomic library of Acetobacter suboxydans was constructed using Yeast\| E.coli shuttle plasmid YEp352 as vector.Two positive transformants,designated as DH5α(pAD91) and DH5α(pAD98),were obtained by scree...The partial genomic library of Acetobacter suboxydans was constructed using Yeast\| E.coli shuttle plasmid YEp352 as vector.Two positive transformants,designated as DH5α(pAD91) and DH5α(pAD98),were obtained by screening the growth of transformants on the agar plate in which D\|arabitol was used as the sole carbon source.The results of Southern blot and restriction endonuclease analysis showed that the two recombinants are identical.The insert is about 2.3kb.Arabitol dehydrogenase activity assay indicated that the transformants could produce D\|xylulose\|forming D\|arabitol dehydrogenase.Hence,the gene encoding D\|arabitol dehydrogenase exists in the cloned DNA fragment.展开更多
[Objective] This study aims to conduct cloning and sequence analysis of ADH gene in D. Antiqua. [Method] Full-length cDNA of ADH gene in D. antiqua was cloned by using RACE technology (GenBank access number: JQ66600...[Objective] This study aims to conduct cloning and sequence analysis of ADH gene in D. Antiqua. [Method] Full-length cDNA of ADH gene in D. antiqua was cloned by using RACE technology (GenBank access number: JQ666006). Analysis of the homology, characteristics and functional domains of ADH sequence and the phy- Iogenetic relationship to other dipteran ADH were conducted. [Result] The full length of ADH cDNA is 1 088 bp containing a 771 bp of ORF, encoding 256 amino acids, with a calculated relative molecular weight of 30.80 kDa and a theoretical isoelectric point of 8.22. The deduced amino acid sequence shares the highest homology with Glossina morsitans morsitans based on homological analysis and phylogenetic analysis. [Conclusion] This study provides basis for further research of ADH gene.展开更多
AIM: To evaluate the relationship between drinking and polymorphisms of alcohol dehydrogenase 2 (ADH2) and/or aldehyde dehydrogenase 2 (ALDH2) for risk of colorectal cancer (CRC) in Chinese males. METHODS: A case-cont...AIM: To evaluate the relationship between drinking and polymorphisms of alcohol dehydrogenase 2 (ADH2) and/or aldehyde dehydrogenase 2 (ALDH2) for risk of colorectal cancer (CRC) in Chinese males. METHODS: A case-control study was conducted in 190 cases and 223 population-based controls. ADH2 Arg47His (G-A) and ALDH2 Glu487Lys (G-A)genotypes were identified by PCR and denaturing high-performance liquid chromatography (DHPLC). Information on smoking and drinking was collected and odds ratio (OR) was estimated. RESULTS: The ADH2 A/A and ALDH2 G/G genotypes showed moderately increased CRC risk. The age- and smoking-adjusted OR for ADH2 A/A relative to G/A and G/G was 1.60 (95% CI=1.08-2.36), and the adjusted OR for ALDH2 G/G relative to G/A and A/A was 1.79 (95% CI=1.19-2.69). Signif icant interactions between ADH2, ALDH2 and drinking were observed. As compared to the subjects with ADH2 G and ALDH2 A alleles, those with ADH2 A/A and ALDH2 G/G genotypes had a signif icantly increased OR (3.05, 95% CI= 1.67-5.57). The OR for CRC among drinkers with the ADH2 A/A genotype was increased to 3.44 (95% CI= 1.84-6.42) compared with non-drinkers with the ADH2 G allele. The OR for CRC among drinkers with the ALDH2 G/G genotype was also increased to 2.70 (95% CI= 1.57-4.66) compared with non-drinkers with the ALDH2 A allele. CONCLUSION: Polymorphisms of the ADH2 and ALDH2 genes are significantly associated with CRC risk. There are also signifi cant gene-gene and gene- environment interactions between drinking and ADH2 and ALDH2 polymorphisms regarding CRC risk in Chinese males.展开更多
AIM: To evaluate the impact of alcohol dehydrogenase-2 (ADH2) and aldehyde dehydrogenase-2 (ALDH2) polymorphisms on esophageal cancer susceptibility in Southeast Chinese males.METHODS: Two hundred and twenty-one...AIM: To evaluate the impact of alcohol dehydrogenase-2 (ADH2) and aldehyde dehydrogenase-2 (ALDH2) polymorphisms on esophageal cancer susceptibility in Southeast Chinese males.METHODS: Two hundred and twenty-one esophageal cancer patients and 292 healthy controls from Taixing city in Jiangsu Province were enrolled in this study. ADH2 and ALDH2 genotypes were examined by polymerase chain reaction and denaturing high-performance liquid chromatography. Unconditional logistic regression was used to calculate the odds ratios (OR) and 95% confidence interval (CI).RESULTS: The ADH G allele carriers were more susceptible to esophageal cancer, but no association was found between ADH2 genotypes and risk of esophageal cancer when disregarding alcohol drinking status. Regardless of ADH2 genotype, ALDH2G/A or A/A carriers had significantly increased risk of developing esophageal cancer, with homozygous individuals showing higher esophageal cancer risk than those who were heterozygous. A significant interaction between ALDH2 and drinking was detected regarding esophageal cancer risk; the OR was 3.05 (95% CI: 2.49-6.25). Compared with non-drinkers carrying both ALDH2 G/G and ADH2 A/A, drinkers carrying both ALDH2 A allele and ADH2 G allele showed a significantly higher risk of developing esophageal cancer (OR = 8.36, 95% CI: 2.98-23.46).CONCLUSION: Both ADH2 G allele and ALDH2 A allele significantly increase the risk of esophageal cancer development in Southeast Chinese males. ALDH2 A allele significantly increases the risk of esophageal cancer development especially in alcohol drinkers. Alcohol drinkers carrying both ADH2 G allele and ALDH2 A allele have a higher risk of developing esophageal cancer.展开更多
Salinity stress is one of the most serious factors limiting the distribution and productivity of crops and forest trees. The detrimental effects of salt on plants are a consequence of both a water deficit resulting in...Salinity stress is one of the most serious factors limiting the distribution and productivity of crops and forest trees. The detrimental effects of salt on plants are a consequence of both a water deficit resulting in osmotic stress and the effects of excess sodium ions on critical biochemical process. A novel approach to improve salt tolerance has been established by using the technology of plant genetic transformation and using loblolly pine (Pinus taeda L.) as a model plant. Mature zygotic embryos of loblolly pine were infected with Agrobacterium tumefaciens strain LBA 4404 harbouring the plasmid pBIGM which carrying the mannitol-1-phosphate dehydrogenase (Mt1D) and glucitol-6-phosphate dehydrogenase (GutD). Organogenic transgenic calli and transgenic regenerated plantlets were produced on selection medium containing 15mg/L kanamycin and confirmed by Southern blot analysis of genomic DNA. Salt tolerance assays demonstrated that the salt tolerance of transgenic calli and regenerated plantlets were increased. These results suggested that an efficient Agrobacterium tumefaciens-mediated transformation protocol for stable integration of foreign genes into loblolly pine has been developed and this could be useful for the future studies on engineering breeding of conifers.展开更多
文摘The partial genomic library of Acetobacter suboxydans was constructed using Yeast\| E.coli shuttle plasmid YEp352 as vector.Two positive transformants,designated as DH5α(pAD91) and DH5α(pAD98),were obtained by screening the growth of transformants on the agar plate in which D\|arabitol was used as the sole carbon source.The results of Southern blot and restriction endonuclease analysis showed that the two recombinants are identical.The insert is about 2.3kb.Arabitol dehydrogenase activity assay indicated that the transformants could produce D\|xylulose\|forming D\|arabitol dehydrogenase.Hence,the gene encoding D\|arabitol dehydrogenase exists in the cloned DNA fragment.
基金Supported by National Natural Science Foundation of China (30870340,31071968)Scientific and Technological Research Project of Chongqing Municipal Education Commission (KJ100620)Key Project of Chongqing Normal University (2011XLZ12)~~
文摘[Objective] This study aims to conduct cloning and sequence analysis of ADH gene in D. Antiqua. [Method] Full-length cDNA of ADH gene in D. antiqua was cloned by using RACE technology (GenBank access number: JQ666006). Analysis of the homology, characteristics and functional domains of ADH sequence and the phy- Iogenetic relationship to other dipteran ADH were conducted. [Result] The full length of ADH cDNA is 1 088 bp containing a 771 bp of ORF, encoding 256 amino acids, with a calculated relative molecular weight of 30.80 kDa and a theoretical isoelectric point of 8.22. The deduced amino acid sequence shares the highest homology with Glossina morsitans morsitans based on homological analysis and phylogenetic analysis. [Conclusion] This study provides basis for further research of ADH gene.
基金(in part) A Grant-in Aid for International Scientifi c ResearchSpecial Cancer Research from the Ministry of Education, Science, Sports, Culture and Technology of Japan, No. 11137311Major International (Regional) Joint Research Projects from the National Natural Science Foundation of China (NSFC), No. 30320140461
文摘AIM: To evaluate the relationship between drinking and polymorphisms of alcohol dehydrogenase 2 (ADH2) and/or aldehyde dehydrogenase 2 (ALDH2) for risk of colorectal cancer (CRC) in Chinese males. METHODS: A case-control study was conducted in 190 cases and 223 population-based controls. ADH2 Arg47His (G-A) and ALDH2 Glu487Lys (G-A)genotypes were identified by PCR and denaturing high-performance liquid chromatography (DHPLC). Information on smoking and drinking was collected and odds ratio (OR) was estimated. RESULTS: The ADH2 A/A and ALDH2 G/G genotypes showed moderately increased CRC risk. The age- and smoking-adjusted OR for ADH2 A/A relative to G/A and G/G was 1.60 (95% CI=1.08-2.36), and the adjusted OR for ALDH2 G/G relative to G/A and A/A was 1.79 (95% CI=1.19-2.69). Signif icant interactions between ADH2, ALDH2 and drinking were observed. As compared to the subjects with ADH2 G and ALDH2 A alleles, those with ADH2 A/A and ALDH2 G/G genotypes had a signif icantly increased OR (3.05, 95% CI= 1.67-5.57). The OR for CRC among drinkers with the ADH2 A/A genotype was increased to 3.44 (95% CI= 1.84-6.42) compared with non-drinkers with the ADH2 G allele. The OR for CRC among drinkers with the ALDH2 G/G genotype was also increased to 2.70 (95% CI= 1.57-4.66) compared with non-drinkers with the ALDH2 A allele. CONCLUSION: Polymorphisms of the ADH2 and ALDH2 genes are significantly associated with CRC risk. There are also signifi cant gene-gene and gene- environment interactions between drinking and ADH2 and ALDH2 polymorphisms regarding CRC risk in Chinese males.
基金Supported by Grant from Department of Health,No.H200526,Jiangsu Province,China
文摘AIM: To evaluate the impact of alcohol dehydrogenase-2 (ADH2) and aldehyde dehydrogenase-2 (ALDH2) polymorphisms on esophageal cancer susceptibility in Southeast Chinese males.METHODS: Two hundred and twenty-one esophageal cancer patients and 292 healthy controls from Taixing city in Jiangsu Province were enrolled in this study. ADH2 and ALDH2 genotypes were examined by polymerase chain reaction and denaturing high-performance liquid chromatography. Unconditional logistic regression was used to calculate the odds ratios (OR) and 95% confidence interval (CI).RESULTS: The ADH G allele carriers were more susceptible to esophageal cancer, but no association was found between ADH2 genotypes and risk of esophageal cancer when disregarding alcohol drinking status. Regardless of ADH2 genotype, ALDH2G/A or A/A carriers had significantly increased risk of developing esophageal cancer, with homozygous individuals showing higher esophageal cancer risk than those who were heterozygous. A significant interaction between ALDH2 and drinking was detected regarding esophageal cancer risk; the OR was 3.05 (95% CI: 2.49-6.25). Compared with non-drinkers carrying both ALDH2 G/G and ADH2 A/A, drinkers carrying both ALDH2 A allele and ADH2 G allele showed a significantly higher risk of developing esophageal cancer (OR = 8.36, 95% CI: 2.98-23.46).CONCLUSION: Both ADH2 G allele and ALDH2 A allele significantly increase the risk of esophageal cancer development in Southeast Chinese males. ALDH2 A allele significantly increases the risk of esophageal cancer development especially in alcohol drinkers. Alcohol drinkers carrying both ADH2 G allele and ALDH2 A allele have a higher risk of developing esophageal cancer.
文摘Salinity stress is one of the most serious factors limiting the distribution and productivity of crops and forest trees. The detrimental effects of salt on plants are a consequence of both a water deficit resulting in osmotic stress and the effects of excess sodium ions on critical biochemical process. A novel approach to improve salt tolerance has been established by using the technology of plant genetic transformation and using loblolly pine (Pinus taeda L.) as a model plant. Mature zygotic embryos of loblolly pine were infected with Agrobacterium tumefaciens strain LBA 4404 harbouring the plasmid pBIGM which carrying the mannitol-1-phosphate dehydrogenase (Mt1D) and glucitol-6-phosphate dehydrogenase (GutD). Organogenic transgenic calli and transgenic regenerated plantlets were produced on selection medium containing 15mg/L kanamycin and confirmed by Southern blot analysis of genomic DNA. Salt tolerance assays demonstrated that the salt tolerance of transgenic calli and regenerated plantlets were increased. These results suggested that an efficient Agrobacterium tumefaciens-mediated transformation protocol for stable integration of foreign genes into loblolly pine has been developed and this could be useful for the future studies on engineering breeding of conifers.