A series of Ni based catalysts with different supports and basic additives were prepared by sequential impregnation method. The catalysts were characterized by XRD, BET, H2-TPR and CO2-TPD techniques. It was found tha...A series of Ni based catalysts with different supports and basic additives were prepared by sequential impregnation method. The catalysts were characterized by XRD, BET, H2-TPR and CO2-TPD techniques. It was found that the introduction of basic additives enhanced the basicities of catalyats and promoted the dispersities of Ni particles by strong interaction between Ni2+ and basic additives. Among the Ni based catalysts, 10%Ni/10%La203/ZrO2 showed the superior performance in sorbitol hydrogenolysis. The synergistic effect of Ni and La203 was proven to play an essential role in selective synthesis of EG and 1,2-PG. In the optimal reaction condition, the catalyst presented 100% sorbitol conversion and over 48% glycols (EG and 1,2-PG) yield. The kinetics study of polyols (sorbitol, xylitol and glycerol) hydrogenolysis showed that polyols with more hydroxyl number have higher activity and products distribution was final results of kinetic balance, which could give us some inspiration abeut how to change the products selectivity.展开更多
Dissolution kinetics of K2SO4 crystal in aqueous ethanol solutions was studied on-line with ion selective electrode. The concentration of K2SO4 was calculated from the determined electromotive force in which the activ...Dissolution kinetics of K2SO4 crystal in aqueous ethanol solutions was studied on-line with ion selective electrode. The concentration of K2SO4 was calculated from the determined electromotive force in which the activity coefficient of components in the liquid phase was calculated with the Pitzer equation. Dissolution kinetic parameters in the modified statistical rate theory were regressed. The correlation results show that dissolution rate of K2SO4 is slower in aqueous ethanol solutions than that in aqueous solutions. The two most important reasons are as follows: (1) The solubility of K2SO4 in aqueous ethanol solutions is lower than that in aqueous solutions, which causes a decrease of the driving force of mass transfer. (2) The process of surface reaction of K2SO4 became slower due to the addition of ethanol, so that the whole process is mainly dominated by the surface reaction instead of mass transfer.展开更多
The production of polyunsaturated fatty acids (PUFAs) concentrates by enzymatic catalysis has gained interest due to their stereospecificity and the milder conditions employed compared to the use of inorganic cataly...The production of polyunsaturated fatty acids (PUFAs) concentrates by enzymatic catalysis has gained interest due to their stereospecificity and the milder conditions employed compared to the use of inorganic catalysts. The enzymatic glycerolysis of sardine oil by Lipozymeò435 to get PUFA concentrates in the forms of di‐and monoacylglycerols (DAGs, MAGs) in an optimized amount of tert‐butanol as the organic solvent was studied. First, mass transfer limitation of the reaction sys‐tem was analyzed. The effects of different operating variables such as lipase loading, temperature and feed composition were investigated. A semi‐empirical kinetic model based on the reversible elementary reactions of glycerolysis and hydrolysis of the glycerides was employed to correlate the experimental kinetic data. A molar ratio glycerol:oil of 3:1 was the optimum, which produced more than 84 wt%of MAG at 323 K. A comparison with other glycerolysis systems was performed using MAG yield, reaction rate and significance of kinetic parameters.展开更多
The kinetics for production of ethyl levulinate from glucose in ethanol medium was investigated. The experiments were performed in various temperatures (433-473 K) and initial glucose concentrations (0.056-0.168 mo...The kinetics for production of ethyl levulinate from glucose in ethanol medium was investigated. The experiments were performed in various temperatures (433-473 K) and initial glucose concentrations (0.056-0.168 mol·L-1) with extremely low sulfuric acid as the catalyst. The results show that higher temperature can improve the conversion of glucose to ethyl levulinate, with higher yield of ethyl levulinate (44.79%, by mole) obtained at 473 K for 210 min. The kinetics follows a simplified first-order kinetic model. For the main and side reactions, the values of activation energy are 122.64 and 70.97 kJ·mo1-1, and the reaction orders are 0.985 and 0.998, respectively.展开更多
The electrochemical reduction of CO2 on a Pb electrode was investigated in 0. 1 mol/L KOH/methanol electrolyte at different temperatures and pressures. A graphite electrode was employed as the counter electrode, and a...The electrochemical reduction of CO2 on a Pb electrode was investigated in 0. 1 mol/L KOH/methanol electrolyte at different temperatures and pressures. A graphite electrode was employed as the counter electrode, and an AglAgCl (sat. KCl) electrode was used as the reference electrode. The Tafel plots of the products by the electrochemical reduction of CO2 showed that the formation process of HCOOH differed from that of CO and the reduction of CO2was not limited by the diffusion of CO2 in the investigated potential range. Kinetic analysis indicated that the reaction orders were 0. 573 for electrochemical reduction of CO2 to CO and 0. 671 for CO2 to HCOOH in the cathodic direction.展开更多
Synthesizing epichlorohydrin(ECH) from dichloropropanol(DCP) is a complicated reaction due to the partial decomposition of ECH under harsh conditions. A microchemical system can provide a feasible platform for improvi...Synthesizing epichlorohydrin(ECH) from dichloropropanol(DCP) is a complicated reaction due to the partial decomposition of ECH under harsh conditions. A microchemical system can provide a feasible platform for improving this process by conducting a separation once full conversion has been achieved. In this work, referring to a common DCP feed used in industry, the reaction performance of mixed DCP isomers with Na OH in the microchemical system on various time scales was investigated. The operating window for achieving high conversion and selectivity was on a time scale of seconds, while the side reactions normally occurred on a time scale of minutes. Plenty of Cl-ions together with a high temperature were proved to be critical factors for ECH hydrolysis.A kinetic study of alkaline mediated ECH hydrolysis was performed and the requirements for an improved ECH synthesis were proposed by combining quantitative analysis using a simpli fied reaction model with experimental results on the time scale of minutes. Compared with the conventional distillation process, this new strategy for ECH synthesis exploited microchemical system and decoupled the reaction and separation with potentials of higher productivity and better reliability in scaling up.展开更多
The degradation of diethylene glycol terephthalate (DTP) and polyethylene terephthalate (PET) fiber by microbe was studied.The degree of DTP degradation was determined by High Performance Liquid Chromatography (HPLC) ...The degradation of diethylene glycol terephthalate (DTP) and polyethylene terephthalate (PET) fiber by microbe was studied.The degree of DTP degradation was determined by High Performance Liquid Chromatography (HPLC) to be more than 90%.The products after degradation of DTP and PET fiber were various.The degradation of DTP can be described by the first-order reaction model.The degradation of PET fiber was found to be little,but surface erosion of PET fiber could be clearly seen from the SEM photographs indicating there occurred some traces of biodegradation on the PET fiber surface.展开更多
基金This work was supported by the National Natural Science Foundation of China (No.51376185 and No.51106108), the National Basic Research Program of China (No.2012CB215304), the National High Technology Research and Development Program of China (No.2012AA101806), and the Natural Science Foundation of Guangdong Province (No.$2013010011612).
文摘A series of Ni based catalysts with different supports and basic additives were prepared by sequential impregnation method. The catalysts were characterized by XRD, BET, H2-TPR and CO2-TPD techniques. It was found that the introduction of basic additives enhanced the basicities of catalyats and promoted the dispersities of Ni particles by strong interaction between Ni2+ and basic additives. Among the Ni based catalysts, 10%Ni/10%La203/ZrO2 showed the superior performance in sorbitol hydrogenolysis. The synergistic effect of Ni and La203 was proven to play an essential role in selective synthesis of EG and 1,2-PG. In the optimal reaction condition, the catalyst presented 100% sorbitol conversion and over 48% glycols (EG and 1,2-PG) yield. The kinetics study of polyols (sorbitol, xylitol and glycerol) hydrogenolysis showed that polyols with more hydroxyl number have higher activity and products distribution was final results of kinetic balance, which could give us some inspiration abeut how to change the products selectivity.
基金Supported by the National Natural Science Foundation of China (No. 29376244) the Natural Science Foundation of Jiangsu Province (BK 97124)+1 种基金 the Outstanding Youth of National Natural Science Foundation of China (No. 29925616) the Alexander-von-Humbol
文摘Dissolution kinetics of K2SO4 crystal in aqueous ethanol solutions was studied on-line with ion selective electrode. The concentration of K2SO4 was calculated from the determined electromotive force in which the activity coefficient of components in the liquid phase was calculated with the Pitzer equation. Dissolution kinetic parameters in the modified statistical rate theory were regressed. The correlation results show that dissolution rate of K2SO4 is slower in aqueous ethanol solutions than that in aqueous solutions. The two most important reasons are as follows: (1) The solubility of K2SO4 in aqueous ethanol solutions is lower than that in aqueous solutions, which causes a decrease of the driving force of mass transfer. (2) The process of surface reaction of K2SO4 became slower due to the addition of ethanol, so that the whole process is mainly dominated by the surface reaction instead of mass transfer.
基金the Spanish Government through MINECO (CTQ2012-39131-C02-01) for financial supportUniversity of Burgos for a pre-doctoral fellowshipMINECO for a pre-doctoral grant (reference BES-2013-063937)
文摘The production of polyunsaturated fatty acids (PUFAs) concentrates by enzymatic catalysis has gained interest due to their stereospecificity and the milder conditions employed compared to the use of inorganic catalysts. The enzymatic glycerolysis of sardine oil by Lipozymeò435 to get PUFA concentrates in the forms of di‐and monoacylglycerols (DAGs, MAGs) in an optimized amount of tert‐butanol as the organic solvent was studied. First, mass transfer limitation of the reaction sys‐tem was analyzed. The effects of different operating variables such as lipase loading, temperature and feed composition were investigated. A semi‐empirical kinetic model based on the reversible elementary reactions of glycerolysis and hydrolysis of the glycerides was employed to correlate the experimental kinetic data. A molar ratio glycerol:oil of 3:1 was the optimum, which produced more than 84 wt%of MAG at 323 K. A comparison with other glycerolysis systems was performed using MAG yield, reaction rate and significance of kinetic parameters.
基金Supported by the National Natural Science Foundation of China(21176227)the State Key Laboratory of Motor Vehicle Biofuel Technology(2013011)
文摘The kinetics for production of ethyl levulinate from glucose in ethanol medium was investigated. The experiments were performed in various temperatures (433-473 K) and initial glucose concentrations (0.056-0.168 mol·L-1) with extremely low sulfuric acid as the catalyst. The results show that higher temperature can improve the conversion of glucose to ethyl levulinate, with higher yield of ethyl levulinate (44.79%, by mole) obtained at 473 K for 210 min. The kinetics follows a simplified first-order kinetic model. For the main and side reactions, the values of activation energy are 122.64 and 70.97 kJ·mo1-1, and the reaction orders are 0.985 and 0.998, respectively.
基金the National Natural Science Foundation of China (Grant No. 50408024)Zhejiang Provincial Natural Science Foundation of China(Grant No. M203034 and Y505036).
文摘The electrochemical reduction of CO2 on a Pb electrode was investigated in 0. 1 mol/L KOH/methanol electrolyte at different temperatures and pressures. A graphite electrode was employed as the counter electrode, and an AglAgCl (sat. KCl) electrode was used as the reference electrode. The Tafel plots of the products by the electrochemical reduction of CO2 showed that the formation process of HCOOH differed from that of CO and the reduction of CO2was not limited by the diffusion of CO2 in the investigated potential range. Kinetic analysis indicated that the reaction orders were 0. 573 for electrochemical reduction of CO2 to CO and 0. 671 for CO2 to HCOOH in the cathodic direction.
基金Supported by the National Natural Science Foundation of China(21036002,21176136)the National Science and Technology Support Program of China(2011BAC06B01)
文摘Synthesizing epichlorohydrin(ECH) from dichloropropanol(DCP) is a complicated reaction due to the partial decomposition of ECH under harsh conditions. A microchemical system can provide a feasible platform for improving this process by conducting a separation once full conversion has been achieved. In this work, referring to a common DCP feed used in industry, the reaction performance of mixed DCP isomers with Na OH in the microchemical system on various time scales was investigated. The operating window for achieving high conversion and selectivity was on a time scale of seconds, while the side reactions normally occurred on a time scale of minutes. Plenty of Cl-ions together with a high temperature were proved to be critical factors for ECH hydrolysis.A kinetic study of alkaline mediated ECH hydrolysis was performed and the requirements for an improved ECH synthesis were proposed by combining quantitative analysis using a simpli fied reaction model with experimental results on the time scale of minutes. Compared with the conventional distillation process, this new strategy for ECH synthesis exploited microchemical system and decoupled the reaction and separation with potentials of higher productivity and better reliability in scaling up.
基金The Sustentation Fund of Science Technology Development of High University of Tianjin City's (021106)
文摘The degradation of diethylene glycol terephthalate (DTP) and polyethylene terephthalate (PET) fiber by microbe was studied.The degree of DTP degradation was determined by High Performance Liquid Chromatography (HPLC) to be more than 90%.The products after degradation of DTP and PET fiber were various.The degradation of DTP can be described by the first-order reaction model.The degradation of PET fiber was found to be little,but surface erosion of PET fiber could be clearly seen from the SEM photographs indicating there occurred some traces of biodegradation on the PET fiber surface.