Aim PLA/PLGA was used as biodegradable and biocompatible carriers to achieve sustained release of estradiol (E 2). Methods Microcapsules (MC) were prepared by an emulsification solvent extraction method, and then ...Aim PLA/PLGA was used as biodegradable and biocompatible carriers to achieve sustained release of estradiol (E 2). Methods Microcapsules (MC) were prepared by an emulsification solvent extraction method, and then the properties and in vitro drug release behavior of MC were examined. An analysis of variance (ANOVA) was used to test the statistical significance. Then, multiple comparisons were made with a T method between levels to examine the significance of difference further. For all the results a P value 】0 05 was considered statistically insignificant . Results Under the same conditions, the water adding speed and the particle size had significant effects ( P 【0 01) on the entrapment efficiency of MC; the water adding speed and the concentration of PLA in the oil phase had significant effects ( P 【0 01) on the diameter MC in medium. Release of E 2 from MC was influenced significantly ( P 【0 01) by the water adding speed and the type and molecule weight of the polymers. But the differences between levels of the variates were not all significant. Conclusion E 2 PLA/PLGA MC with various properties can be formed when the formulation and the technology were changed accordingly.展开更多
The total synthesis of 3,7 dimethyl 2 tridecanyl acetate,the active component of the sex pheromone of diprion pini,was investigated in this paper.The two key synthins blocks,2 methyl octan 1 yl lithium and 3,4 ...The total synthesis of 3,7 dimethyl 2 tridecanyl acetate,the active component of the sex pheromone of diprion pini,was investigated in this paper.The two key synthins blocks,2 methyl octan 1 yl lithium and 3,4 dimethyl γ butyrolactone,were obtained from diethyl malonate and 2,3 epoxybutane.2 Methyl octan 1 yl lithium reacted with 3,4 dimethyl γ butyrolactone to yield the ketoalcohol and then followed by Huang Minlong reduction to afford 3,7 dimethyl 2 tridecanol,acylated with acetic anhydide to give 3,7 dimethyl 2 tridecanyl acetate.展开更多
An Hβ-supported heteropoly acid (H3PW12O40 (HPW)/Hβ) catalyst was successfully prepared by wetness impregnation, and investigated in the alkylation of toluene with tert-butyl alcohol for the synthesis of 4-tert-...An Hβ-supported heteropoly acid (H3PW12O40 (HPW)/Hβ) catalyst was successfully prepared by wetness impregnation, and investigated in the alkylation of toluene with tert-butyl alcohol for the synthesis of 4-tert-butyltoluene (PTBT). X-ray diffraction, scanning electron microscopy, transmis- sion electron microscopy, fourier-transform infrared spectroscopy, inductively coupled plas- ma-optical emission spectrometry, the brunauer emmett teller (BET) method, tempera- ture-programmed NH3 desorption, and pyridine adsorption infrared spectroscopy were used to characterize the catalyst. The results showed that loading HPW on Hβ effectively increased the B acidity and decreased the pore size of Hβ. The B acidity of HPW/Hβ was 142.97 μmol/g, which is 69.74% higher than that of Hβ (84.23 μmol/g). The catalytic activity of the HPW/Hβ catalyst was much better than that of the parent Hβ zeolite because of its high B acidity. The toluene conversion over HPW/Hβ reached 73.1%, which is much higher than that achieved with Hβ (54.0%). When HPW was loaded on Hβ, the BET surface area of Hβ decreased from 492.5 to 379.6 m2/g, accompa- nied by a significant decrease in the pore size from 3.90 to 3.17 nm. Shape selectivity can therefore play an important role and increase the product selectivity of the HPW/Hβ catalyst compared with that of the parent Hβ. PTBT (kinetic diameter 0.58 nm) can easily diffuse through the narrowed pores of HPW/Hβ, but 3-tert-butyltoluene (kinetic diameter 0.65 nm) diffusion is restricted because of steric hindrance in these narrow pores. This results in high PTBT selectivity over HPW/Hβ (around 81%). The HPW/Hβ catalyst gave a stable catalytic performance in reusability tests.展开更多
The electrodeposition behaviors of nickel on glassy carbon(GC) and carbon steel(CS) electrodes were investigated in the14.3%-85.7%(mole fraction) betaine.HCl ethylene glycol(EG) ionic liquid using cyclic volta...The electrodeposition behaviors of nickel on glassy carbon(GC) and carbon steel(CS) electrodes were investigated in the14.3%-85.7%(mole fraction) betaine.HCl ethylene glycol(EG) ionic liquid using cyclic voltammetry and chronoamperometry.The results indicated that the reduction of Ni(Ⅱ) on CS electrode via a diffusion-controlled quasi-reversible process was much more facile and easier than that occurred on GC electrode,which followed a diffusion-controlled three-dimensional instantaneous nucleation and growth.Scanning electron microscopy was used to observe that the deposit was dense and contained fine crystallites with average size of(80±4) nm.Energy dispersive spectrometer analysis showed that the obtained deposit was metallic nickel.X-ray diffraction spectroscopy indicated that(111) plane was the most preferred crystal orientation.The nickel deposit was luminous and bright,and had good adhesion with the CS substrate.展开更多
By mRNA differential display from control versus NaCl_shocked Arabidopsis seedlings, we screened an Arabidopsis 3′ partial cDNA, which represents a gene encoding inositol 1,3,4_trisphosphate (Ins(1,3,4)P ...By mRNA differential display from control versus NaCl_shocked Arabidopsis seedlings, we screened an Arabidopsis 3′ partial cDNA, which represents a gene encoding inositol 1,3,4_trisphosphate (Ins(1,3,4)P 3) 5/6_kinase_like protein. Northern blotting analysis showed that the gene, named as AtITL1, is strongly induced by NaCl and low temperature, but not induced by drought and abscisic acid (ABA). Analysis of 5′ region of the AtITL1 found that there are dehydration_responsive element/C_repeat (DRE/CRT) cis _acting elements, but no elements related to G_box and ABRE (ABA_responsive element) in its 5′ region, which is consistent with the expression patterns of the AtITL1 independent of ABA. These results suggest that the AtITL1 may be involved in the osmotic stress response pathway independent of ABA.展开更多
Cu/SiO2 catalysts prepared by the ammonia evaporation method were applied to hydrogenation of diethyl malonate to 1,3‐propanediol. The calcination temperature played an important role in the structural evolution and ...Cu/SiO2 catalysts prepared by the ammonia evaporation method were applied to hydrogenation of diethyl malonate to 1,3‐propanediol. The calcination temperature played an important role in the structural evolution and catalytic performance of the Cu/SiO2 catalysts, which were systematically characterized by N2 adsorption‐desorption, inductively coupled plasma‐atomic emission spectros‐copy, N2O chemisorption, X‐ray diffraction, Fourier transform infrared spectroscopy, H2 tempera‐ture‐programmed reduction, transmission electron microscopy, and X‐ray photoelectron spectros‐copy. When the Cu/SiO2 catalyst was calcined at 723 K, 90.7%conversion of diethyl malonate and 32.3%selectivity of 1,3‐propanediol were achieved. Compared with Cu/SiO2 catalysts calcined at other temperatures, the enhanced catalytic performance of the Cu/SiO2 catalyst calcined at 723 K can be attributed to better dispersion of copper species, larger cupreous surface area and greater amount of copper phyllosilicate, which results in a higher ratio of Cu+/Cu0. The synergetic effect of Cu0 and Cu+is suggested to be responsible for the optimum activity.展开更多
Nano-ZnO particle (nZnOp) reinforced polyethylene glycol (PEG)/polyethylene terephthalate (PET) (nZnOp/PEG/PET) copolymeric composites with different mass fractions and molecular weights of PEG are synthesized...Nano-ZnO particle (nZnOp) reinforced polyethylene glycol (PEG)/polyethylene terephthalate (PET) (nZnOp/PEG/PET) copolymeric composites with different mass fractions and molecular weights of PEG are synthesized via in-situ polymerization. The dispersion of nZnOp in copolymer matrixes and the effects of PEG and nZnOp particles on the crystallization behavior of the composites are studied by TEM, differential scanning calorimetry(DSC), XRD and Fourier thansform infrared spectroscopy (FTIR ). The results reveal that nZnOp particles are dispersed in the matrixes with nano-scale, and the addition of PEG induces more homogeneous dispersion of nZnOp. Simultaneously, these nanoparticles become nucleating centers during the crystallization of the matrixes. PEG segments can improve the flexibility of the PET molecular chain, resulting in the drop of the cold crystallization temperature and the rise of the crystallization rate of the composites. Furthermore, PEG (4 000) with the mass fraction of 10% can promote the crystallization rate of the composites. The mechanical properties show that the nano-particles strengthen and toughen the PET matrix, whereas PEG weakens these improve- ments.展开更多
Acetol is a major light oxygenate and readily produced from staged or fast pyrolysis of lignocellulose biomass. Herein we report that acetol can be selectively converted to methyl pyruvate, an important fine chemical,...Acetol is a major light oxygenate and readily produced from staged or fast pyrolysis of lignocellulose biomass. Herein we report that acetol can be selectively converted to methyl pyruvate, an important fine chemical, through oxidative esterification over Au-based catalysts. Detailed experimental studies showed that Au on amphoteric supports with appropriate strength and balanced ratio of acid and base sites can facilitate the desired oxidative-esterification pathway without accelerating undesired aldol-condensation or Cannizzaro reactions. In particular, hydroxyapatite (with a Ca/P ratio of 1.62) supported Au achieved 87% selectivity to methyl pyruvate at an acetol conversion of 62%.展开更多
The most striking morphological feature of eukaryotic cells is the presence of various membrane-enclosed compartments. These compartments, including organelles and transient transport intermediates, are not static. Ra...The most striking morphological feature of eukaryotic cells is the presence of various membrane-enclosed compartments. These compartments, including organelles and transient transport intermediates, are not static. Rather, dynamic exchange of proteins and membrane is needed to maintain cellular homeostasis. One of the most dramatic examples of membrane mobilization is seen during the process ofmacroautophagy. Macroautophagy is the primary cellular pathway for degradation of long-lived proteins and organelles. In response to environmental cues, such as starvation or other types of stress, the cell produces a unique membrane structure, the phagophore. The phagophore sequesters cytoplasm as it forms a double-membrane cytosolic vesicle, an autophagosome. Upon completion, the autophagosome fuses with a lysosome or a vacuole in yeast, which delivers hydrolases that break down the inner autophagosome membrane along with its cargo, and the resulting macromolecules are released back into the cytosol for reuse. Autophagy is therefore a recycling process, allowing cells to survive periods of nutrient limitation; however, it has a wider physiological role, participating in development and aging, and also in protection against pathogen invasion, cancer and certain neurodegenerative diseases. In many cases, the role ofautophagy is identified through studies of an autophagy-related protein, Atg6/Beclin 1. This protein is part of a lipid kinase complex, and recent studies suggest that it plays a central role in coordinating the cytoprotective function ofautophagy and in opposing the cellular death process of apoptosis. Here, we summarize our current knowledge ofAtg6/Beclin 1 in different model organisms and its unique function in the cell.展开更多
A series of metal-organic frameworks MOF-808-X(6-connected)were synthesized by regulating the ZrOCl2·8H2O/1,3,5-benzenetricarboxylic acid(BTC)molar ratio(X)and tested for the direct synthesis of dimethyl carbonat...A series of metal-organic frameworks MOF-808-X(6-connected)were synthesized by regulating the ZrOCl2·8H2O/1,3,5-benzenetricarboxylic acid(BTC)molar ratio(X)and tested for the direct synthesis of dimethyl carbonate(DMC)from CO2 and CH3OH with 1,1,1-trimethoxymethane(TMM)as a dehydrating agent.The effect of the ZrOCl2·8H2O/BTC molar ratio on the physicochemical properties and catalytic performance of MOF-808-X was investigated.Results showed that a proper ZrOCl2·8H2O/BTC molar ratio during MOF-808-X synthesis was fairly important to reduce the redundant BTC or zirconium clusters trapped in the micropores of MOF-808-X.MOF-808-4,with almost no redundant BTC or zirconium clusters trapped in the micropores,exhibited the largest surface area,micropore size,and the number of acidic-basic sites,and consequently showed the best activity among all MOF-808-X,with the highest DMC yield of 21.5% under the optimal reaction conditions.Moreover,benefiting from the larger micropore size,MOF-808-4 outperformed our previously reported UiO-66-24(12-connected),which had even more acidic-basic sites and larger surface area than MOF-808-4,mainly because the larger micropore size of MOF-808-4 provided higher accessibility for the reactant to the active sites located in the micropores.Furthermore,a possible reaction mechanism over MOF-808-4 was proposed based on the in situ FT-IR results.The effects of different reaction parameters on DMC formation and the reusability of MOF-808-X were also studied.展开更多
文摘Aim PLA/PLGA was used as biodegradable and biocompatible carriers to achieve sustained release of estradiol (E 2). Methods Microcapsules (MC) were prepared by an emulsification solvent extraction method, and then the properties and in vitro drug release behavior of MC were examined. An analysis of variance (ANOVA) was used to test the statistical significance. Then, multiple comparisons were made with a T method between levels to examine the significance of difference further. For all the results a P value 】0 05 was considered statistically insignificant . Results Under the same conditions, the water adding speed and the particle size had significant effects ( P 【0 01) on the entrapment efficiency of MC; the water adding speed and the concentration of PLA in the oil phase had significant effects ( P 【0 01) on the diameter MC in medium. Release of E 2 from MC was influenced significantly ( P 【0 01) by the water adding speed and the type and molecule weight of the polymers. But the differences between levels of the variates were not all significant. Conclusion E 2 PLA/PLGA MC with various properties can be formed when the formulation and the technology were changed accordingly.
基金Supported by Foundation for University Key Teacher by the Min-istry of Education
文摘The total synthesis of 3,7 dimethyl 2 tridecanyl acetate,the active component of the sex pheromone of diprion pini,was investigated in this paper.The two key synthins blocks,2 methyl octan 1 yl lithium and 3,4 dimethyl γ butyrolactone,were obtained from diethyl malonate and 2,3 epoxybutane.2 Methyl octan 1 yl lithium reacted with 3,4 dimethyl γ butyrolactone to yield the ketoalcohol and then followed by Huang Minlong reduction to afford 3,7 dimethyl 2 tridecanol,acylated with acetic anhydide to give 3,7 dimethyl 2 tridecanyl acetate.
文摘An Hβ-supported heteropoly acid (H3PW12O40 (HPW)/Hβ) catalyst was successfully prepared by wetness impregnation, and investigated in the alkylation of toluene with tert-butyl alcohol for the synthesis of 4-tert-butyltoluene (PTBT). X-ray diffraction, scanning electron microscopy, transmis- sion electron microscopy, fourier-transform infrared spectroscopy, inductively coupled plas- ma-optical emission spectrometry, the brunauer emmett teller (BET) method, tempera- ture-programmed NH3 desorption, and pyridine adsorption infrared spectroscopy were used to characterize the catalyst. The results showed that loading HPW on Hβ effectively increased the B acidity and decreased the pore size of Hβ. The B acidity of HPW/Hβ was 142.97 μmol/g, which is 69.74% higher than that of Hβ (84.23 μmol/g). The catalytic activity of the HPW/Hβ catalyst was much better than that of the parent Hβ zeolite because of its high B acidity. The toluene conversion over HPW/Hβ reached 73.1%, which is much higher than that achieved with Hβ (54.0%). When HPW was loaded on Hβ, the BET surface area of Hβ decreased from 492.5 to 379.6 m2/g, accompa- nied by a significant decrease in the pore size from 3.90 to 3.17 nm. Shape selectivity can therefore play an important role and increase the product selectivity of the HPW/Hβ catalyst compared with that of the parent Hβ. PTBT (kinetic diameter 0.58 nm) can easily diffuse through the narrowed pores of HPW/Hβ, but 3-tert-butyltoluene (kinetic diameter 0.65 nm) diffusion is restricted because of steric hindrance in these narrow pores. This results in high PTBT selectivity over HPW/Hβ (around 81%). The HPW/Hβ catalyst gave a stable catalytic performance in reusability tests.
基金Projects(51274108,21263007,51204080)supported by the National Natural Science Foundation of ChinaProject(2011FA009)supported by the Applied Research Foundation of Yunnan Province,ChinaProject(14118441)supported by the Talents Cultivation Foundation of Kunming University of Science and Technology,China
文摘The electrodeposition behaviors of nickel on glassy carbon(GC) and carbon steel(CS) electrodes were investigated in the14.3%-85.7%(mole fraction) betaine.HCl ethylene glycol(EG) ionic liquid using cyclic voltammetry and chronoamperometry.The results indicated that the reduction of Ni(Ⅱ) on CS electrode via a diffusion-controlled quasi-reversible process was much more facile and easier than that occurred on GC electrode,which followed a diffusion-controlled three-dimensional instantaneous nucleation and growth.Scanning electron microscopy was used to observe that the deposit was dense and contained fine crystallites with average size of(80±4) nm.Energy dispersive spectrometer analysis showed that the obtained deposit was metallic nickel.X-ray diffraction spectroscopy indicated that(111) plane was the most preferred crystal orientation.The nickel deposit was luminous and bright,and had good adhesion with the CS substrate.
文摘By mRNA differential display from control versus NaCl_shocked Arabidopsis seedlings, we screened an Arabidopsis 3′ partial cDNA, which represents a gene encoding inositol 1,3,4_trisphosphate (Ins(1,3,4)P 3) 5/6_kinase_like protein. Northern blotting analysis showed that the gene, named as AtITL1, is strongly induced by NaCl and low temperature, but not induced by drought and abscisic acid (ABA). Analysis of 5′ region of the AtITL1 found that there are dehydration_responsive element/C_repeat (DRE/CRT) cis _acting elements, but no elements related to G_box and ABRE (ABA_responsive element) in its 5′ region, which is consistent with the expression patterns of the AtITL1 independent of ABA. These results suggest that the AtITL1 may be involved in the osmotic stress response pathway independent of ABA.
文摘Cu/SiO2 catalysts prepared by the ammonia evaporation method were applied to hydrogenation of diethyl malonate to 1,3‐propanediol. The calcination temperature played an important role in the structural evolution and catalytic performance of the Cu/SiO2 catalysts, which were systematically characterized by N2 adsorption‐desorption, inductively coupled plasma‐atomic emission spectros‐copy, N2O chemisorption, X‐ray diffraction, Fourier transform infrared spectroscopy, H2 tempera‐ture‐programmed reduction, transmission electron microscopy, and X‐ray photoelectron spectros‐copy. When the Cu/SiO2 catalyst was calcined at 723 K, 90.7%conversion of diethyl malonate and 32.3%selectivity of 1,3‐propanediol were achieved. Compared with Cu/SiO2 catalysts calcined at other temperatures, the enhanced catalytic performance of the Cu/SiO2 catalyst calcined at 723 K can be attributed to better dispersion of copper species, larger cupreous surface area and greater amount of copper phyllosilicate, which results in a higher ratio of Cu+/Cu0. The synergetic effect of Cu0 and Cu+is suggested to be responsible for the optimum activity.
基金Supported by the Program of Jiangsu Development & Reform Commission(2005)the Industrial-ization Boosting Program of College Scientific Reserach Achievements of the Education Department of Jiangsu Province(JHB06-03)~~
文摘Nano-ZnO particle (nZnOp) reinforced polyethylene glycol (PEG)/polyethylene terephthalate (PET) (nZnOp/PEG/PET) copolymeric composites with different mass fractions and molecular weights of PEG are synthesized via in-situ polymerization. The dispersion of nZnOp in copolymer matrixes and the effects of PEG and nZnOp particles on the crystallization behavior of the composites are studied by TEM, differential scanning calorimetry(DSC), XRD and Fourier thansform infrared spectroscopy (FTIR ). The results reveal that nZnOp particles are dispersed in the matrixes with nano-scale, and the addition of PEG induces more homogeneous dispersion of nZnOp. Simultaneously, these nanoparticles become nucleating centers during the crystallization of the matrixes. PEG segments can improve the flexibility of the PET molecular chain, resulting in the drop of the cold crystallization temperature and the rise of the crystallization rate of the composites. Furthermore, PEG (4 000) with the mass fraction of 10% can promote the crystallization rate of the composites. The mechanical properties show that the nano-particles strengthen and toughen the PET matrix, whereas PEG weakens these improve- ments.
基金supported by the National Natural Science Foundation of China(91545114,91545203,and 21576227)the 985 Program of the Chemistry and Chemical Engineering disciplines of Xiamen University~~
文摘Acetol is a major light oxygenate and readily produced from staged or fast pyrolysis of lignocellulose biomass. Herein we report that acetol can be selectively converted to methyl pyruvate, an important fine chemical, through oxidative esterification over Au-based catalysts. Detailed experimental studies showed that Au on amphoteric supports with appropriate strength and balanced ratio of acid and base sites can facilitate the desired oxidative-esterification pathway without accelerating undesired aldol-condensation or Cannizzaro reactions. In particular, hydroxyapatite (with a Ca/P ratio of 1.62) supported Au achieved 87% selectivity to methyl pyruvate at an acetol conversion of 62%.
文摘The most striking morphological feature of eukaryotic cells is the presence of various membrane-enclosed compartments. These compartments, including organelles and transient transport intermediates, are not static. Rather, dynamic exchange of proteins and membrane is needed to maintain cellular homeostasis. One of the most dramatic examples of membrane mobilization is seen during the process ofmacroautophagy. Macroautophagy is the primary cellular pathway for degradation of long-lived proteins and organelles. In response to environmental cues, such as starvation or other types of stress, the cell produces a unique membrane structure, the phagophore. The phagophore sequesters cytoplasm as it forms a double-membrane cytosolic vesicle, an autophagosome. Upon completion, the autophagosome fuses with a lysosome or a vacuole in yeast, which delivers hydrolases that break down the inner autophagosome membrane along with its cargo, and the resulting macromolecules are released back into the cytosol for reuse. Autophagy is therefore a recycling process, allowing cells to survive periods of nutrient limitation; however, it has a wider physiological role, participating in development and aging, and also in protection against pathogen invasion, cancer and certain neurodegenerative diseases. In many cases, the role ofautophagy is identified through studies of an autophagy-related protein, Atg6/Beclin 1. This protein is part of a lipid kinase complex, and recent studies suggest that it plays a central role in coordinating the cytoprotective function ofautophagy and in opposing the cellular death process of apoptosis. Here, we summarize our current knowledge ofAtg6/Beclin 1 in different model organisms and its unique function in the cell.
基金financially supported by the Natural Science Foundation of Shanxi Province,China(201601D102006)the Science Foundation for Young Scientists of Shanxi Province,China(201701D221052)+2 种基金the National Natural Science Foundation of China(21776294)the Key Science and Technology Program of Shanxi Province,China(MD2014-09,MD2014-10)the Independent Research Project of the State Key Laboratory of Coal Conversion(2018BWZ002)~~
文摘A series of metal-organic frameworks MOF-808-X(6-connected)were synthesized by regulating the ZrOCl2·8H2O/1,3,5-benzenetricarboxylic acid(BTC)molar ratio(X)and tested for the direct synthesis of dimethyl carbonate(DMC)from CO2 and CH3OH with 1,1,1-trimethoxymethane(TMM)as a dehydrating agent.The effect of the ZrOCl2·8H2O/BTC molar ratio on the physicochemical properties and catalytic performance of MOF-808-X was investigated.Results showed that a proper ZrOCl2·8H2O/BTC molar ratio during MOF-808-X synthesis was fairly important to reduce the redundant BTC or zirconium clusters trapped in the micropores of MOF-808-X.MOF-808-4,with almost no redundant BTC or zirconium clusters trapped in the micropores,exhibited the largest surface area,micropore size,and the number of acidic-basic sites,and consequently showed the best activity among all MOF-808-X,with the highest DMC yield of 21.5% under the optimal reaction conditions.Moreover,benefiting from the larger micropore size,MOF-808-4 outperformed our previously reported UiO-66-24(12-connected),which had even more acidic-basic sites and larger surface area than MOF-808-4,mainly because the larger micropore size of MOF-808-4 provided higher accessibility for the reactant to the active sites located in the micropores.Furthermore,a possible reaction mechanism over MOF-808-4 was proposed based on the in situ FT-IR results.The effects of different reaction parameters on DMC formation and the reusability of MOF-808-X were also studied.