The heating load simulation models of the residential buildings in Lhasa are established for enhancing the space organization’s adaptability to climate and radiation and improving its energy saving performance.The sp...The heating load simulation models of the residential buildings in Lhasa are established for enhancing the space organization’s adaptability to climate and radiation and improving its energy saving performance.The space organization items a e analyzed for both the existing buildings without insulation and new buildings with good insulation.The items include orientation design,south a d north balcony design,the north and south partition wall’s position design,storey height design and window-wall ratio design.Simulation results show that orientation is the key design element for energy saving design,and adverse orientation can obviouslyincrease heating energy consumption;south and north balconies can reduce winter heating energy consumption;partition walls move to the north,which means that the south room’s big depth design leads to less heating energy consumption,but the effect is not inconspicuous;smaier storey height results in less heating load.For the existing buildings,the window-wall ratio of south side has a balance point for energy saving design in the calculation condition.For the new buildings with good insulation,enlarging the south window-wal ratio can continuously reduce heating energy consumption,but the energy saving rate between models gets smaier.The heating energy consumption comparison study between the common model and optimal space design model demonstrates that the energy saving design can significantly reduce heating energy consumption展开更多
In this paper,the performance of a solar thermal system with a focus on space heating was investigated.A 70 m^(2) detached house was considered in the weather conditions of the city of Tehran,Iran.A thermosyphon solar...In this paper,the performance of a solar thermal system with a focus on space heating was investigated.A 70 m^(2) detached house was considered in the weather conditions of the city of Tehran,Iran.A thermosyphon solar water heater with a flat plate collector combined with an auxiliary electrical heater supplies the heating demand of the house.The proposed system was modeled and analyzed using TRNSYS software.In this regard,the TRNBuild module was employed for the building load calculation.The model has been simulated for one year of operation.The effects of the solar collector’s surface area and storage volume were assessed.The results show that for a solar collector with a 15 m^(2) surface area,the solar fraction is 0.29 in January,during which the solar radiation is the lowest.Using solar collectors of10 m^(2) and 5 m^(2) surface areas,the solar fraction falls to 0.23 and 0.14,respectively in January.Besides,two cases of 150 L and 300 L storage tanks are taken into account.Eventually,it is found that using a 15 m^(2) solar collector and a 150 L storage tank can appropriately provide the building’ s heating demand taking the thermal performance and economic aspects into consideration.展开更多
文摘开发了一种新型被动式太阳房,该房屋在寒冷的冬天(室外温度-10℃以下),室内不用生火,无需固定的暖气设施,只要晴天有太阳时,白天室温就可达到20℃以上,夜间保持在16℃以上;遇到阴天,用可移动式红外线电取暖器,室温保持在16~20℃,120 m^2的房间24 h耗电不超过9 k Wh;在炎热的夏天使用空调,比常规房屋节电80%以上。
基金The National Natural Science Foundation of China(No.51608426,51590913)the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry(No.(2014)1685)
文摘The heating load simulation models of the residential buildings in Lhasa are established for enhancing the space organization’s adaptability to climate and radiation and improving its energy saving performance.The space organization items a e analyzed for both the existing buildings without insulation and new buildings with good insulation.The items include orientation design,south a d north balcony design,the north and south partition wall’s position design,storey height design and window-wall ratio design.Simulation results show that orientation is the key design element for energy saving design,and adverse orientation can obviouslyincrease heating energy consumption;south and north balconies can reduce winter heating energy consumption;partition walls move to the north,which means that the south room’s big depth design leads to less heating energy consumption,but the effect is not inconspicuous;smaier storey height results in less heating load.For the existing buildings,the window-wall ratio of south side has a balance point for energy saving design in the calculation condition.For the new buildings with good insulation,enlarging the south window-wal ratio can continuously reduce heating energy consumption,but the energy saving rate between models gets smaier.The heating energy consumption comparison study between the common model and optimal space design model demonstrates that the energy saving design can significantly reduce heating energy consumption
文摘In this paper,the performance of a solar thermal system with a focus on space heating was investigated.A 70 m^(2) detached house was considered in the weather conditions of the city of Tehran,Iran.A thermosyphon solar water heater with a flat plate collector combined with an auxiliary electrical heater supplies the heating demand of the house.The proposed system was modeled and analyzed using TRNSYS software.In this regard,the TRNBuild module was employed for the building load calculation.The model has been simulated for one year of operation.The effects of the solar collector’s surface area and storage volume were assessed.The results show that for a solar collector with a 15 m^(2) surface area,the solar fraction is 0.29 in January,during which the solar radiation is the lowest.Using solar collectors of10 m^(2) and 5 m^(2) surface areas,the solar fraction falls to 0.23 and 0.14,respectively in January.Besides,two cases of 150 L and 300 L storage tanks are taken into account.Eventually,it is found that using a 15 m^(2) solar collector and a 150 L storage tank can appropriately provide the building’ s heating demand taking the thermal performance and economic aspects into consideration.