Diesel particulate matter(DPM) is a by-product from operating diesel engines. Since diesel powers are one of the major sources of energy for mobile underground mining equipment, the adverse health effects of DPM are o...Diesel particulate matter(DPM) is a by-product from operating diesel engines. Since diesel powers are one of the major sources of energy for mobile underground mining equipment, the adverse health effects of DPM are of a great concern. This paper used computational fluid dynamics(CFD) method to study the effect of entry inclination on DPM plume distribution in a dead end entry. An upward mining face and a downward mining face were built with a truck and a loader in loading operation close to the face area. A species transport model with incorporated buoyancy effect was used to examine the DPM dispersion pattern for the above steady-state scenarios. High DPM and temperature regions were identified for the two different faces. The model was used to assess the role of auxiliary ventilation in reducing DPM exposures of underground miners working in those entries. In this study, it is suggested to provide local ventilation at least three times of the diesel exhaust rate to be able to lower the average DPM level for the mining upward face. The requirement for local ventilation is much less for the mining downward face. This can provide guidelines for good working practices and selection of diesel emission reduction technologies underground.展开更多
In order to explore the influence of different caving thicknesses on the MSS distributionand evolving characteristics of surrounding rocks in unsymmetrical disposal andfully mechanized top-coal caving (FMTC),based on ...In order to explore the influence of different caving thicknesses on the MSS distributionand evolving characteristics of surrounding rocks in unsymmetrical disposal andfully mechanized top-coal caving (FMTC),based on unsymmetrical disposal characteristics,the analyses of numerical simulation,material simulation and in-situ observation weresynthetically applied according to the geological and technical conditions of the 1151(3)working face in Xieqiao Mine.The results show that the stress peak value of the MSS-baseand the ratio of MSS-body height to caving thickness are nonlinear and inverselyproportional to the caving thickness.The MSS-base width,the MSS-body height,theMSS-base distance to working face wall and the rise distance of MSS-base beside coalpillar are nonlinear and directly proportional to the caving thickness.The characteristics ofMSS distribution and its evolving rules of surrounding rocks and the integrated cavingthickness effects are obtained.The investigations will provide lots of theoretic referencesto the surrounding rocks' stability control of the working face and roadway,roadway layout,gas extraction and exploitation,and efficiency of caving,etc.展开更多
At a fully mechanized working face of a coal mine as prototype,we investigated,by simulation,the flow field and dust distribution during the process of its isolation by a curtain of air,using the CFD software, Fluent....At a fully mechanized working face of a coal mine as prototype,we investigated,by simulation,the flow field and dust distribution during the process of its isolation by a curtain of air,using the CFD software, Fluent.The results show that the air curtain installed on the shearer can effectively prevent the dust (especially the respirable dust)from diffusing into the work area of the operator,reducing the dust concentration on the side of the operator and greatly improving his working environment.The field application of the air curtain shows that the dust-isolation effect of an air curtain is quite noticeable.The isolation efficiency for respiratory dust is over 70%and,as well,it has good dust-isolation effect for nonrespiratory dust.The air curtain is a useful way to resolve the problem of dust-isolation at a fully mechanized working face.It has a practical background elsewhere with more extensive applications.展开更多
Based on spatio-temporal correlativity analysis method, the automatic identification techniques for data anomaly monitoring of coal mining working face gas are presented. The asynchronous correlative characteristics o...Based on spatio-temporal correlativity analysis method, the automatic identification techniques for data anomaly monitoring of coal mining working face gas are presented. The asynchronous correlative characteristics of gas migration in working face airflow direction are qualitatively analyzed. The calculation method of asynchronous correlation delay step and the prediction and inversion formulas of gas concentration changing with time and space after gas emission in the air return roadway are provided. By calculating one hundred and fifty groups of gas sensors data series from a coal mine which have the theoretical correlativity, the correlative coefficient values range of eight kinds of data anomaly is obtained. Then the gas moni- toring data anomaly identification algorithm based on spatio-temporal correlativity analysis is accordingly presented. In order to improve the efficiency of analysis, the gas sensors code rules which can express the spatial topological relations are sug- gested. The experiments indicate that methods presented in this article can effectively compensate the defects of methods based on a single gas sensor monitoring data.展开更多
A combined method of numerical simulation and field testing was adopted in this study in the interest of solving the problem of hard to control high concentrate dusts on a fully mechanized mining face. In addi- tion, ...A combined method of numerical simulation and field testing was adopted in this study in the interest of solving the problem of hard to control high concentrate dusts on a fully mechanized mining face. In addi- tion, the dust suppression effect of a multi-direction whirling air curtain was studied in this paper. Under the influence of the wall attachment effect, the compressed air which blows out from the two-phase or three-phase radial outlets on the generator of the air curtain can form a multi-direction whirling air curtain, which can cover the whole roadway section of a fully mechanized mining face. The traditional method of controlling dust is a forcing system with exhaust overlap which has the major disadvantage of lacking a jet effect and consequently results in poor dust control. It is difficult to form the air flow field within the range of Lp ≤ 5√S. However, due to the effect of this novel system, the radial airflow can be turned into axial airflow allowing fresh air to flow through the length of the heading. The air flow field which is good at controlling dust diffusion can be formed 12.8 m from the heading face. Furthermore, the field measurement results show that before the application of a multi-direction whirling air curtain, the dust concentration is 348.6 mg/m^3 and 271.4 mg/m^3 respectively at the roadway cross-section measurement points which are 5 m and 10 m from the heading face. However, after the application of the multi-direction whirling air curtain, the dust concentration is only 61.2 mg/m3 and 14.8 mg/m^3, respectively. Therefore, the dust control effect of a multi-direction whirling air curtain is obvious.展开更多
An analysis of the variation rule of abutment pressure at the mining working face in a single coal seam and the mechanical behavior of surrounding rock during stoping is presented. Consideration of the elastic and pla...An analysis of the variation rule of abutment pressure at the mining working face in a single coal seam and the mechanical behavior of surrounding rock during stoping is presented. Consideration of the elastic and plastic deformation zones that develop during the mining process allowed the determination of a relationship between horizontal stress and vertical stress. Based on this, a confined pressure unloading test was conducted by the use of the "gas-containing coal tbermo-fluid-solid coupling 3-axis servo seep- age" experimental apparatus. Thus, gas flow patterns in the elastic and plastic zones were derived from an experimental point of view. Darcy's law and the Klinkenberg effect were used to derive a gas flow equation for the elastic and plastic stress fields. The study of gas flow phenomena at the working face during coal mining is of great importance for the study of gas migration and enrichment patterns.展开更多
With ever-increasing depth of coal mine and the continuous improvement of mechanization, heat damage has become one of the major disasters in coal mine exploitation. Established the temperature prediction models suita...With ever-increasing depth of coal mine and the continuous improvement of mechanization, heat damage has become one of the major disasters in coal mine exploitation. Established the temperature prediction models suitable for different kinds of tunnels through analysis of the heat of shafts, roadways and working faces. The average annual air temperature prediction equation from the inlets of shafts to the working faces was derived. The formula was deduced using combine method of iteration and direct calculation. The method can improve the precision of air temperature prediction, so we could establish the whole pathway air temperature prediction model with high precision. Emphasizing on the effects of leakage air to air temperature of working face and using the ideology of the finite difference method and considering the differential equation of inlet and outlet at different stages, this method can significantly improve the accuracy of temperature prediction. Program development uses Visual Basic 6.0 Language, and the Origin software was used to fit the relevant data. The predicted results shows that the air temperature generally tends to rapidly increase in the air inlet, then changes slowly on working face, and finally increases sharply in air outlet in the condition of goaf air leakage. The condition is in general consistent with the air temperature change tendency of working face with U-type ventilation system. The software can provide reliable scientific basis for reasonable ventilation, cooling measures and management of coal mine thermal hazards.展开更多
基金financial support provided by the Western US Mining Safety and Health Training & Translation Center by the National Institute for Occupational Safety and Health of America (NIOSH) (No.1R25OH008319)
文摘Diesel particulate matter(DPM) is a by-product from operating diesel engines. Since diesel powers are one of the major sources of energy for mobile underground mining equipment, the adverse health effects of DPM are of a great concern. This paper used computational fluid dynamics(CFD) method to study the effect of entry inclination on DPM plume distribution in a dead end entry. An upward mining face and a downward mining face were built with a truck and a loader in loading operation close to the face area. A species transport model with incorporated buoyancy effect was used to examine the DPM dispersion pattern for the above steady-state scenarios. High DPM and temperature regions were identified for the two different faces. The model was used to assess the role of auxiliary ventilation in reducing DPM exposures of underground miners working in those entries. In this study, it is suggested to provide local ventilation at least three times of the diesel exhaust rate to be able to lower the average DPM level for the mining upward face. The requirement for local ventilation is much less for the mining downward face. This can provide guidelines for good working practices and selection of diesel emission reduction technologies underground.
基金Supported by National Basic Research Program(973)(2005cb221503)National Natural Science Foundation of China(50674003)Science and Technological Fund of Anhui Province for Outstanding Youth(08040106839)
文摘In order to explore the influence of different caving thicknesses on the MSS distributionand evolving characteristics of surrounding rocks in unsymmetrical disposal andfully mechanized top-coal caving (FMTC),based on unsymmetrical disposal characteristics,the analyses of numerical simulation,material simulation and in-situ observation weresynthetically applied according to the geological and technical conditions of the 1151(3)working face in Xieqiao Mine.The results show that the stress peak value of the MSS-baseand the ratio of MSS-body height to caving thickness are nonlinear and inverselyproportional to the caving thickness.The MSS-base width,the MSS-body height,theMSS-base distance to working face wall and the rise distance of MSS-base beside coalpillar are nonlinear and directly proportional to the caving thickness.The characteristics ofMSS distribution and its evolving rules of surrounding rocks and the integrated cavingthickness effects are obtained.The investigations will provide lots of theoretic referencesto the surrounding rocks' stability control of the working face and roadway,roadway layout,gas extraction and exploitation,and efficiency of caving,etc.
基金Financial support for this work,provided by the National Natural Science Foundation of China(No.50974060)the State Safety Production Science and Technology Development Plan (No.06-396)
文摘At a fully mechanized working face of a coal mine as prototype,we investigated,by simulation,the flow field and dust distribution during the process of its isolation by a curtain of air,using the CFD software, Fluent.The results show that the air curtain installed on the shearer can effectively prevent the dust (especially the respirable dust)from diffusing into the work area of the operator,reducing the dust concentration on the side of the operator and greatly improving his working environment.The field application of the air curtain shows that the dust-isolation effect of an air curtain is quite noticeable.The isolation efficiency for respiratory dust is over 70%and,as well,it has good dust-isolation effect for nonrespiratory dust.The air curtain is a useful way to resolve the problem of dust-isolation at a fully mechanized working face.It has a practical background elsewhere with more extensive applications.
基金Supported by the National Natural Science Foundation of China (40971275, 50811120111)
文摘Based on spatio-temporal correlativity analysis method, the automatic identification techniques for data anomaly monitoring of coal mining working face gas are presented. The asynchronous correlative characteristics of gas migration in working face airflow direction are qualitatively analyzed. The calculation method of asynchronous correlation delay step and the prediction and inversion formulas of gas concentration changing with time and space after gas emission in the air return roadway are provided. By calculating one hundred and fifty groups of gas sensors data series from a coal mine which have the theoretical correlativity, the correlative coefficient values range of eight kinds of data anomaly is obtained. Then the gas moni- toring data anomaly identification algorithm based on spatio-temporal correlativity analysis is accordingly presented. In order to improve the efficiency of analysis, the gas sensors code rules which can express the spatial topological relations are sug- gested. The experiments indicate that methods presented in this article can effectively compensate the defects of methods based on a single gas sensor monitoring data.
基金supported by the Key Program of the Coal Joint Funds of the National Natural Science Foundation of China (No.U1261205)the Youth Program of National Natural Science Foundation of China (No.51404147)+2 种基金the Class General Financial Grant from the China Postdoctoral Science Foundation (No.2015M570601)the Scientific Research Foundation of Shandong University of Science and Technology for Recruited Talents (No.2014RCJJ029)the State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology,Shandong University of Science and Technology (No.MDPC2013ZR02)
文摘A combined method of numerical simulation and field testing was adopted in this study in the interest of solving the problem of hard to control high concentrate dusts on a fully mechanized mining face. In addi- tion, the dust suppression effect of a multi-direction whirling air curtain was studied in this paper. Under the influence of the wall attachment effect, the compressed air which blows out from the two-phase or three-phase radial outlets on the generator of the air curtain can form a multi-direction whirling air curtain, which can cover the whole roadway section of a fully mechanized mining face. The traditional method of controlling dust is a forcing system with exhaust overlap which has the major disadvantage of lacking a jet effect and consequently results in poor dust control. It is difficult to form the air flow field within the range of Lp ≤ 5√S. However, due to the effect of this novel system, the radial airflow can be turned into axial airflow allowing fresh air to flow through the length of the heading. The air flow field which is good at controlling dust diffusion can be formed 12.8 m from the heading face. Furthermore, the field measurement results show that before the application of a multi-direction whirling air curtain, the dust concentration is 348.6 mg/m^3 and 271.4 mg/m^3 respectively at the roadway cross-section measurement points which are 5 m and 10 m from the heading face. However, after the application of the multi-direction whirling air curtain, the dust concentration is only 61.2 mg/m3 and 14.8 mg/m^3, respectively. Therefore, the dust control effect of a multi-direction whirling air curtain is obvious.
基金supported by the National Basic Research Program of China (No.2011CB201203)the Fundamental Research Funds for the Central Universities (No.CDJZR10240019)
文摘An analysis of the variation rule of abutment pressure at the mining working face in a single coal seam and the mechanical behavior of surrounding rock during stoping is presented. Consideration of the elastic and plastic deformation zones that develop during the mining process allowed the determination of a relationship between horizontal stress and vertical stress. Based on this, a confined pressure unloading test was conducted by the use of the "gas-containing coal tbermo-fluid-solid coupling 3-axis servo seep- age" experimental apparatus. Thus, gas flow patterns in the elastic and plastic zones were derived from an experimental point of view. Darcy's law and the Klinkenberg effect were used to derive a gas flow equation for the elastic and plastic stress fields. The study of gas flow phenomena at the working face during coal mining is of great importance for the study of gas migration and enrichment patterns.
基金Supported by the National Natural Science Foundation of China (50674091) Fundamental Research Funds for the Central Universities (2010YZ01 ) The authors gratefully acknowledge the contributions of The National Natural Science Foundation and Fundamental Research Funds for the Central Universities for funding this study.
文摘With ever-increasing depth of coal mine and the continuous improvement of mechanization, heat damage has become one of the major disasters in coal mine exploitation. Established the temperature prediction models suitable for different kinds of tunnels through analysis of the heat of shafts, roadways and working faces. The average annual air temperature prediction equation from the inlets of shafts to the working faces was derived. The formula was deduced using combine method of iteration and direct calculation. The method can improve the precision of air temperature prediction, so we could establish the whole pathway air temperature prediction model with high precision. Emphasizing on the effects of leakage air to air temperature of working face and using the ideology of the finite difference method and considering the differential equation of inlet and outlet at different stages, this method can significantly improve the accuracy of temperature prediction. Program development uses Visual Basic 6.0 Language, and the Origin software was used to fit the relevant data. The predicted results shows that the air temperature generally tends to rapidly increase in the air inlet, then changes slowly on working face, and finally increases sharply in air outlet in the condition of goaf air leakage. The condition is in general consistent with the air temperature change tendency of working face with U-type ventilation system. The software can provide reliable scientific basis for reasonable ventilation, cooling measures and management of coal mine thermal hazards.