The integrated extraction of coal and gas combines coal mining with gas capture. Taking into account the gas deposition and flow conditions in the Chinese coal basins, this paper describes the status of the theory and...The integrated extraction of coal and gas combines coal mining with gas capture. Taking into account the gas deposition and flow conditions in the Chinese coal basins, this paper describes the status of the theory and key technologies of this integrated extraction system, and presents its application and practice in the Shaqu, Zhongxing, Fenghuangshan and Pingmei mines. Areas for further improvements in future studies are discussed, focusing in particular on the fundamentals of the extraction system to make it greener, more scientific, and more advanced in both the exploitation and utilization of coal and the gas in coal.展开更多
Based on characteristics of deep sea flexible mining system,a new pump-lockage ore transportation system was designed.According to Bernoulli equation and two-phase hydrodynamics theory,parameters of the new system wer...Based on characteristics of deep sea flexible mining system,a new pump-lockage ore transportation system was designed.According to Bernoulli equation and two-phase hydrodynamics theory,parameters of the new system were obtained and four ore transportation systems were analyzed.The results indicate that the pump head of 1 000 m mining system is 100-150 m and that of 5 000 m mining system is 660-750 m.In addition,based on similarity theory,a model of the new transportation system was made,which can simulate more than 5 000 m actual ore transportation system.So both theory and experiment prove that the new pump-lockage ore transportation system is an ideal design for deep sea flexible mining system.展开更多
The present paper introduces the concepts of exergy and treats it applications to analysis of the gain in exergy efficiency between one-step and multi-step thermal processes. The analysis, which is carried out with th...The present paper introduces the concepts of exergy and treats it applications to analysis of the gain in exergy efficiency between one-step and multi-step thermal processes. The analysis, which is carried out with the Excel-based SEPE program, is exemplified with the comparison between single-step and two-steps heat pump setup for providing heat to a floor heating system and for domestic hot water. The paper discusses the use of the concept of exergy efficiency as a measure of success for design of a heat pump application and how the use of information on exergy destruction and temperature levels in different parts of the system add a new perspective to the analysis and the evaluation of the system performance. The paper shows how this information can be used to improve the system configuration and also the operation of the system for given boundary conditions. This is especially useful when the energy from the low temperature sources can be utilized at different temperature or quality levels such as for space heating and domestic hot water.展开更多
Drainage influence radius is the basic parameter for borehole arrangement, while the effect of high pressure water jet slotting technology on borehole drainage influence radius has not been studied systematically. In ...Drainage influence radius is the basic parameter for borehole arrangement, while the effect of high pressure water jet slotting technology on borehole drainage influence radius has not been studied systematically. In this paper, a fully thermo-hydro-mechanical(THM) coupled model which represents the non-linear responses of gas extraction was implemented to demonstrate the reliability of this model through history data matching. Based on this model, the susceptibilities of gas extraction with single slotted borehole, including the permeability, the gas pressure, the temperature, the coal adsorption characteristics and the radius of slot, were quantified through a series of simulations. The simulation results revealed that increasing the permeability, initial gas pressure and temperature could develop the influence radius of single slotted borehole. This finite element model and its simulation results can improve the understanding of the coal-gas interactions of underground gas drainage and provide a scientific basis for the optimization of drainage systems.展开更多
Limited information has been available about the influence of loading density on the performances of Scophthalmus maximus, especially in recirculating aquaculture systems (RAS). In this study, turbot (13.84±2....Limited information has been available about the influence of loading density on the performances of Scophthalmus maximus, especially in recirculating aquaculture systems (RAS). In this study, turbot (13.84±2.74 g; average weigh±SD) were reared at four different initial densities (low 0.66, medium 1.26, sub-high 2.56, high 4.00 kg/m^2) for 10 weeks in RAS at 23±1℃ Final densities were 4.67, 7.25, 14.16, and 17.47 kg/m^2, respectively, which translate to 82, 108, 214, and 282 percent coverage of the tank bottom. Density had both negative and independent impacts on growth. The final mean weight, specific growth rate (SGR), and voluntary feed intake significantly decreased and the coefficient of variation (CV) of final body weight increased with increase in stocking density. The medium and sub-high density groups did not differ significantly in SGR, mean weight, CV, food conversion rate (FCR), feed intake, blood parameters, and digestive enzymes. The protease activities of the digestive tract at pH 7, 8.5, 9, and 10 were significantly higher for the highest density group, but tended to be lower (not significantly) at pH 4 and 8.5 for the lowest density group. The intensity of protease activity was inversely related to feed intake at the different densities. Catalase activity was higher (but not significantly) at the highest density, perhaps because high density started to induce an oxidative effect in turbot. In conclusion, turbot can be cultured in RAS at a density of less than 17.47 kg/m^2. With good water quality and no feed limitation, initial density between 1.26 and 2.56 kg/m^2 (final: 7.25 and 14.16 kg/m^2) would not negatively affect the turbot cultured in RAS. For culture at higher density, multi-level feeding devices are suggested to ease feeding competition.展开更多
The reliability and maintainability of electrical system of drum shearer at Parvade. 1 Coal Mine in central Iran was analyzed. The maintenance and failure data were collected during 19 months of shearer operation. Acc...The reliability and maintainability of electrical system of drum shearer at Parvade. 1 Coal Mine in central Iran was analyzed. The maintenance and failure data were collected during 19 months of shearer operation. According to trend and serial correlation tests, the data were independent and identically distributed (iid) and therefore the statistical techniques were used for modeling. The data analysis show that the time between failures (TBF) and time to repair (TTR) data obey the lognormal and Weibull 3 parameters distribution respectively. Reliability-based preventive maintenance time intervals for electrical system of the drum shearer were calculated with regard to reliability plot. The reliability-based maintenance intervals for 90%, 80%, 70% and 50% reliability level are respectively 9.91, 17.96, 27.56 and 56.1 h. Also the calculations show that time to repair (TTR) of this system varies in range 0.17-4 h with 1.002 h as mean time to repair (MTTR). There is a 80% chance that the electrical system of shearer of Parvade. 1 mine repair will be accomplished within 1.45 h.展开更多
The principles of fine water mist explosion-extinguishing system was introduced. The defects of current systems were analyzed. The concept of a new water column cur-tain and the explosion-extinguishing mechanism were ...The principles of fine water mist explosion-extinguishing system was introduced. The defects of current systems were analyzed. The concept of a new water column cur-tain and the explosion-extinguishing mechanism were given. Using water column curtain to suppress methane explosion in experiment pipes was conducted. The photos were written with schlieren photograph system. The results of experiment show that the effect is perfect.展开更多
Deepwater deployment of offshore structures in different sea states was investigated. The whole deployment system was modeled as a lumped mass model, and discretization scheme for cable geometry and methodology for ca...Deepwater deployment of offshore structures in different sea states was investigated. The whole deployment system was modeled as a lumped mass model, and discretization scheme for cable geometry and methodology for calculating the internal and external force acting on deploying cable were presented. The deployment model suitable for the time-varying length of deploying cable was specified. The free-surface flow fields together with the ship motions were used to calculate dynamic tension in the deploying cable during deployment of the structure. The deployment of deep sea mining system which was a typical subsea working system was employed. Based on lumped mass analysis model and parameters of deep sea mining system, numerical simulations were performed, and dynamic load and dynamic amplification factor(DAF) with different cable parameters, deploying velocities and sea states were obtained. It is shown that cable parameters and amplitudes of ocean waves can significantly influence the dynamic load and DAF, and the time-varying natural period of deploying system is a dominant factor, while the effect of deploying velocity is not obvious.展开更多
A design of a solar-wind electrical hybrid system to supply space heating requirements for a 1,200 m^2 residential building in Amman-Jordan was implemented. The building heating requirements were estimated from existi...A design of a solar-wind electrical hybrid system to supply space heating requirements for a 1,200 m^2 residential building in Amman-Jordan was implemented. The building heating requirements were estimated from existing heating building data based on traditional heating design already adopted by engineering firms in Jordan. The traditional heating load was transferred into electrical load to be supplied by hybrid system. The hybrid system consists of a 75 kW vertical axis windmill and 140 solar modules. Because of the high cost of land in residential buildings, the hybrid system is to be installed on the building roof. The hybrid system and the conventional systems' cost were found to be compatible in four years period when oil prices reach $100 per barrel. As the international price of oil rises above $100 per barrel, the proposed hybrid system becomes more economical than the already existing hot water heating system.展开更多
The combination of photovoltaic system with a thermal to form the hybrid PVT (photovoltaic thermal), which together will generate electricity and heat. This energy depends on the input that is to say the energy of s...The combination of photovoltaic system with a thermal to form the hybrid PVT (photovoltaic thermal), which together will generate electricity and heat. This energy depends on the input that is to say the energy of solar radiation, temperature and speed wind and output which is the operating temperature of the system. This production also depends on the mode of heat removal. The authors present in this article; a study by a numerical simulation of the thermal behavior of a prototype hybrid sensor through the development of an energy balance that involves heat exchange between the different components of the hybrid sensor, and it will allow us to study the influence of internal and external parameters on the temperature variation in the different layers of the prototype PV/T studied.展开更多
This study is a rapid appraisal procedure (RAP) of two forms of agriculture water delivery systems comprising two canal irrigation schemes and 26 Zimbabwean bush pumps in the Midlands and Masvingo Provinces. A longi...This study is a rapid appraisal procedure (RAP) of two forms of agriculture water delivery systems comprising two canal irrigation schemes and 26 Zimbabwean bush pumps in the Midlands and Masvingo Provinces. A longitudinal multiple data collection technique employed involved various primary and secondary sources including site visits, literature review, observation, interviews with key personnel and group discussions. General findings of this study indicate: (1) the available coping mechanisms in smallholder farming in a climate change context and (2) the challenges faced in the actual delivery of water in terms of design, management, physical and institutional factors. The study provides pragmatic recommendations for overall improvement and performance in a local, technical and socio-economic context through evaluation of the current situation, practices and processes. An integrated approach to addressing climate change impacts should include water management, rehabilitation, complete overhaul and introduction of other relevant water systems and water saving farming techniques. Yet, ownership of these technologies by communities remains instrumental. Rural development and agricultural policies that ensure maximum and full capacity utilisation of water systems to improve rural livelihoods, mitigation and adaptation to climate change are recommended.展开更多
In hydraulic engineering,free-surface aeration is a natural phenomenon occurring in smooth channel flows.In self-aerated flows,a key aspect that has not yet been well understood is the formation mechanism of free-surf...In hydraulic engineering,free-surface aeration is a natural phenomenon occurring in smooth channel flows.In self-aerated flows,a key aspect that has not yet been well understood is the formation mechanism of free-surface air entrainment.In this research,the process of free-surface entrapped deformation is analyzed theoretically and the critical radius of curvature for air entrainment is obtained,affected by flow mean velocity and depth.When the severity of local free-surface deformation exceeds the critical condition,the entrapped free surface encounters closure in the unstable deformation movement process,resulting in air entrainment.This inference agrees well with observed experimental results that are obtained from the processes of surface entrapped deformation and air entrainment captured by a high-speed camera-based data acquisition system.This agreement indicates that self-aeration occurs in low-velocity open-channel flows.It is also confirmed that free-surface turbulent deformation provides a mechanism for air entrainment.展开更多
文摘The integrated extraction of coal and gas combines coal mining with gas capture. Taking into account the gas deposition and flow conditions in the Chinese coal basins, this paper describes the status of the theory and key technologies of this integrated extraction system, and presents its application and practice in the Shaqu, Zhongxing, Fenghuangshan and Pingmei mines. Areas for further improvements in future studies are discussed, focusing in particular on the fundamentals of the extraction system to make it greener, more scientific, and more advanced in both the exploitation and utilization of coal and the gas in coal.
基金Project(50574100)supported by the National Natural Science Foundation of China
文摘Based on characteristics of deep sea flexible mining system,a new pump-lockage ore transportation system was designed.According to Bernoulli equation and two-phase hydrodynamics theory,parameters of the new system were obtained and four ore transportation systems were analyzed.The results indicate that the pump head of 1 000 m mining system is 100-150 m and that of 5 000 m mining system is 660-750 m.In addition,based on similarity theory,a model of the new transportation system was made,which can simulate more than 5 000 m actual ore transportation system.So both theory and experiment prove that the new pump-lockage ore transportation system is an ideal design for deep sea flexible mining system.
文摘The present paper introduces the concepts of exergy and treats it applications to analysis of the gain in exergy efficiency between one-step and multi-step thermal processes. The analysis, which is carried out with the Excel-based SEPE program, is exemplified with the comparison between single-step and two-steps heat pump setup for providing heat to a floor heating system and for domestic hot water. The paper discusses the use of the concept of exergy efficiency as a measure of success for design of a heat pump application and how the use of information on exergy destruction and temperature levels in different parts of the system add a new perspective to the analysis and the evaluation of the system performance. The paper shows how this information can be used to improve the system configuration and also the operation of the system for given boundary conditions. This is especially useful when the energy from the low temperature sources can be utilized at different temperature or quality levels such as for space heating and domestic hot water.
基金financial support from the National Natural Science Foundation of China (No.51404250)the Fundamental Research Funds for the Central Universities (No.2013QNB19)+2 种基金the Natural Science Foundation of Jiangsu,China (No.BK20140189)the China Postdoctoral Science Foundation (Nos.2014M550315,2014M550316,2016T90526)the College Graduate Research and Innovation Program of Jiangsu Province (No.KYLX15_1408)
文摘Drainage influence radius is the basic parameter for borehole arrangement, while the effect of high pressure water jet slotting technology on borehole drainage influence radius has not been studied systematically. In this paper, a fully thermo-hydro-mechanical(THM) coupled model which represents the non-linear responses of gas extraction was implemented to demonstrate the reliability of this model through history data matching. Based on this model, the susceptibilities of gas extraction with single slotted borehole, including the permeability, the gas pressure, the temperature, the coal adsorption characteristics and the radius of slot, were quantified through a series of simulations. The simulation results revealed that increasing the permeability, initial gas pressure and temperature could develop the influence radius of single slotted borehole. This finite element model and its simulation results can improve the understanding of the coal-gas interactions of underground gas drainage and provide a scientific basis for the optimization of drainage systems.
基金Supported by the National Natural Science Foundation of China(No.30972267)the Special Fund for Agro-scientific Research in the Public Interest Project(No.201003024)the Knowledge Innovation Program of Chinese Academy of Sciences(No.KZCX2-EW-Q212)
文摘Limited information has been available about the influence of loading density on the performances of Scophthalmus maximus, especially in recirculating aquaculture systems (RAS). In this study, turbot (13.84±2.74 g; average weigh±SD) were reared at four different initial densities (low 0.66, medium 1.26, sub-high 2.56, high 4.00 kg/m^2) for 10 weeks in RAS at 23±1℃ Final densities were 4.67, 7.25, 14.16, and 17.47 kg/m^2, respectively, which translate to 82, 108, 214, and 282 percent coverage of the tank bottom. Density had both negative and independent impacts on growth. The final mean weight, specific growth rate (SGR), and voluntary feed intake significantly decreased and the coefficient of variation (CV) of final body weight increased with increase in stocking density. The medium and sub-high density groups did not differ significantly in SGR, mean weight, CV, food conversion rate (FCR), feed intake, blood parameters, and digestive enzymes. The protease activities of the digestive tract at pH 7, 8.5, 9, and 10 were significantly higher for the highest density group, but tended to be lower (not significantly) at pH 4 and 8.5 for the lowest density group. The intensity of protease activity was inversely related to feed intake at the different densities. Catalase activity was higher (but not significantly) at the highest density, perhaps because high density started to induce an oxidative effect in turbot. In conclusion, turbot can be cultured in RAS at a density of less than 17.47 kg/m^2. With good water quality and no feed limitation, initial density between 1.26 and 2.56 kg/m^2 (final: 7.25 and 14.16 kg/m^2) would not negatively affect the turbot cultured in RAS. For culture at higher density, multi-level feeding devices are suggested to ease feeding competition.
文摘The reliability and maintainability of electrical system of drum shearer at Parvade. 1 Coal Mine in central Iran was analyzed. The maintenance and failure data were collected during 19 months of shearer operation. According to trend and serial correlation tests, the data were independent and identically distributed (iid) and therefore the statistical techniques were used for modeling. The data analysis show that the time between failures (TBF) and time to repair (TTR) data obey the lognormal and Weibull 3 parameters distribution respectively. Reliability-based preventive maintenance time intervals for electrical system of the drum shearer were calculated with regard to reliability plot. The reliability-based maintenance intervals for 90%, 80%, 70% and 50% reliability level are respectively 9.91, 17.96, 27.56 and 56.1 h. Also the calculations show that time to repair (TTR) of this system varies in range 0.17-4 h with 1.002 h as mean time to repair (MTTR). There is a 80% chance that the electrical system of shearer of Parvade. 1 mine repair will be accomplished within 1.45 h.
基金Supported by National Nature Science Foundation of China(59925411)
文摘The principles of fine water mist explosion-extinguishing system was introduced. The defects of current systems were analyzed. The concept of a new water column cur-tain and the explosion-extinguishing mechanism were given. Using water column curtain to suppress methane explosion in experiment pipes was conducted. The photos were written with schlieren photograph system. The results of experiment show that the effect is perfect.
基金Project(51305463) supported by the National Natural Science Foundation of China
文摘Deepwater deployment of offshore structures in different sea states was investigated. The whole deployment system was modeled as a lumped mass model, and discretization scheme for cable geometry and methodology for calculating the internal and external force acting on deploying cable were presented. The deployment model suitable for the time-varying length of deploying cable was specified. The free-surface flow fields together with the ship motions were used to calculate dynamic tension in the deploying cable during deployment of the structure. The deployment of deep sea mining system which was a typical subsea working system was employed. Based on lumped mass analysis model and parameters of deep sea mining system, numerical simulations were performed, and dynamic load and dynamic amplification factor(DAF) with different cable parameters, deploying velocities and sea states were obtained. It is shown that cable parameters and amplitudes of ocean waves can significantly influence the dynamic load and DAF, and the time-varying natural period of deploying system is a dominant factor, while the effect of deploying velocity is not obvious.
文摘A design of a solar-wind electrical hybrid system to supply space heating requirements for a 1,200 m^2 residential building in Amman-Jordan was implemented. The building heating requirements were estimated from existing heating building data based on traditional heating design already adopted by engineering firms in Jordan. The traditional heating load was transferred into electrical load to be supplied by hybrid system. The hybrid system consists of a 75 kW vertical axis windmill and 140 solar modules. Because of the high cost of land in residential buildings, the hybrid system is to be installed on the building roof. The hybrid system and the conventional systems' cost were found to be compatible in four years period when oil prices reach $100 per barrel. As the international price of oil rises above $100 per barrel, the proposed hybrid system becomes more economical than the already existing hot water heating system.
文摘The combination of photovoltaic system with a thermal to form the hybrid PVT (photovoltaic thermal), which together will generate electricity and heat. This energy depends on the input that is to say the energy of solar radiation, temperature and speed wind and output which is the operating temperature of the system. This production also depends on the mode of heat removal. The authors present in this article; a study by a numerical simulation of the thermal behavior of a prototype hybrid sensor through the development of an energy balance that involves heat exchange between the different components of the hybrid sensor, and it will allow us to study the influence of internal and external parameters on the temperature variation in the different layers of the prototype PV/T studied.
文摘This study is a rapid appraisal procedure (RAP) of two forms of agriculture water delivery systems comprising two canal irrigation schemes and 26 Zimbabwean bush pumps in the Midlands and Masvingo Provinces. A longitudinal multiple data collection technique employed involved various primary and secondary sources including site visits, literature review, observation, interviews with key personnel and group discussions. General findings of this study indicate: (1) the available coping mechanisms in smallholder farming in a climate change context and (2) the challenges faced in the actual delivery of water in terms of design, management, physical and institutional factors. The study provides pragmatic recommendations for overall improvement and performance in a local, technical and socio-economic context through evaluation of the current situation, practices and processes. An integrated approach to addressing climate change impacts should include water management, rehabilitation, complete overhaul and introduction of other relevant water systems and water saving farming techniques. Yet, ownership of these technologies by communities remains instrumental. Rural development and agricultural policies that ensure maximum and full capacity utilisation of water systems to improve rural livelihoods, mitigation and adaptation to climate change are recommended.
基金supported by the National Natural Science Foundation of China (Grant No. 51379138)the National Basic Research Program of China (“973” Project) (Grant No. 2013CB035905)
文摘In hydraulic engineering,free-surface aeration is a natural phenomenon occurring in smooth channel flows.In self-aerated flows,a key aspect that has not yet been well understood is the formation mechanism of free-surface air entrainment.In this research,the process of free-surface entrapped deformation is analyzed theoretically and the critical radius of curvature for air entrainment is obtained,affected by flow mean velocity and depth.When the severity of local free-surface deformation exceeds the critical condition,the entrapped free surface encounters closure in the unstable deformation movement process,resulting in air entrainment.This inference agrees well with observed experimental results that are obtained from the processes of surface entrapped deformation and air entrainment captured by a high-speed camera-based data acquisition system.This agreement indicates that self-aeration occurs in low-velocity open-channel flows.It is also confirmed that free-surface turbulent deformation provides a mechanism for air entrainment.